精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 =1(a>b>0)的右焦点为F2(1,0),点H(2, )在椭圆上.
(1)求椭圆的方程;
(2)点M在圆x2+y2=b2上,且M在第一象限,过M作圆x2+y2=b2的切线交椭圆于P,Q两点,求证:△PF2Q的周长是定值.

【答案】
(1)解:根据已知,椭圆的左右焦点为分别是F1(﹣1,0),F2(1,0),c=1,

在椭圆上,∴

∴a=3,b2=a2﹣c2=8,

椭圆的方程是


(2)证明:设P(x1,y1),Q(x2,y2),则

∵0<x1<3,∴

在圆中,M是切点,

同理|QF2|+|QM|=3,

∴|F2P|+|F2Q|+|PQ|=3+3=6,

因此△PF2Q的周长是定值6.



【解析】1、由椭圆的定义可得 2 a = | H F 1 | + | H F 2 | 再根据即得椭圆的方程。
2、由题意可得根据两点间的距离公式表示出再由勾股定理求出根据△PF2Q的周长是定值6

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】8把椅子摆成一排,4人随机就座,任何两人不相邻的坐法种数为(
A.144
B.120
C.72
D.24

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求函数f(x)= (a>0且a≠1)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤|f( )|对(0,+∞)恒成立,且 ,则f(x)的单调递增区间是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 是非零不共线的向量,设 = + ,定义点集M={K| = },当K1 , K2∈M时,若对于任意的r≥2,不等式| |≤c| |恒成立,则实数c的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”: 2 = ,3 = ,4 = ,5 =
则按照以上规律,若8 = 具有“穿墙术”,则n=(
A.7
B.35
C.48
D.63

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设复平面上点Z1 , Z2 , …,Zn , …分别对应复数z1 , z2 , …,zn , …;
(1)设z=r(cosα+isinα),(r>0,α∈R),用数学归纳法证明:zn=rn(cosnα+isinnα),n∈Z+
(2)已知 ,且 (cosα+isinα)(α为实常数),求出数列{zn}的通项公式;
(3)在(2)的条件下,求 |+….

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln(x+1)﹣x2+(2﹣a)x﹣a(a∈R)若存在唯一的正整数x0 , 使得f(x0)>0,则实数a的取值范围是(  )
A.[ ]
B.(
C.( ]
D.(ln3,ln2+1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(1,m), =(2,n).
(1)若m=3,n=﹣1,且 ⊥( ),求实数λ的值;
(2)若| + |=5,求 的最大值.

查看答案和解析>>

同步练习册答案