精英家教网 > 高中数学 > 题目详情
3.定积分$\int_{-2}^2{({x^3}+5{x^5})dx}$的值为0.

分析 根据定积分的计算法则计算即可.

解答 解:$\int_{-2}^2{({x^3}+5{x^5})dx}$=($\frac{1}{4}{x}^{4}$+$\frac{5}{6}{x}^{6}$)|${\;}_{-2}^{2}$=0,
故答案为:0.

点评 本题考查了积分运算,解答的关键是正确找出被积函数的原函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=sin({2x-\frac{π}{6}})$.
(1)求函数f(x)的最小正周期和单调减区间;
(2)求函数f(x)在区间$[{-\frac{π}{12},\frac{π}{2}}]$上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设f(x)=$\frac{1}{1{+x}^{2}}$+$\sqrt{1-{x}^{2}}$${∫}_{0}^{1}$f(x)dx,求${∫}_{0}^{1}$f(x)dx=$\frac{π}{4-π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知三个数x,y,z满足$\frac{xy}{x+y}=-3,\frac{yz}{y+z}=\frac{4}{3},\frac{zx}{z+x}=-\frac{4}{3},\frac{xyz}{xy+yz+zx}$=-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设y=f(x)存在导数,且满足$\lim_{△→0}\frac{f(1-△x)-f(1)}{△x}$=1,则曲线y=f(x)在(1,f(1))处的切线倾斜角为(  )
A.30°B.135°C.45°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若函数y=f(x),x∈D同时满足下列条件:
(1)在D内为单调函数;
(2)?[m,n],使x∈[m,n]时,f(x)的值域为[m,n],则称此函数为D内的可等射函数.
若f(x)=$\frac{{a}^{x}+a-3}{lna}$(a>1)为可等射函数,则a的取值范围为(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.“a=1”是“直线ax+y+1=0与直线x-y+1=0垂直”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知做变速直线运动的物体的速度为v(t)=$\sqrt{t}$,t∈[0,a],若位移量为18,则实数a=9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为x,y,则logxy=1的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{12}$C.$\frac{5}{36}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案