精英家教网 > 高中数学 > 题目详情
如图,边长为2的正方形ABCD中,E为AB的中点,点F为BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于点A1
(1)求证:A1D⊥EF;
(2)M为EF的中点,求DM与面A1EF所成角的正弦值.
分析:(1)证明A1D⊥EF,只要证明A1D⊥平面A1EF即可;
(2)由(1)知 A1D⊥平面 A1EF,连接A1M,则∠A1MD为DM与面A1EF所成角,在直角△A1MD中,可求sin∠A1MD.
解答:(1)证明:由题知,∵A1D⊥A1E,A1D⊥A1F,A1E∩A1F=A
∴A1D⊥平面A1EF
∵EF?平面A1EF
∴A1D⊥EF
(2)解:由(1)知 A1D⊥平面 A1EF,连接A1M,则∠A1MD为DM与面A1EF所成角
∵边长为2的正方形ABCD中,E为AB的中点,点F为BC的中点
∴|BD|=2
2
,|BM|=
2
2
,|DM|=|BD|-|BM|=
3
2
2

在直角△A1MD中,|A1D|=2,∴sin∠A1MD=
2
2
3

∴DM与面A1EF所成角的正弦值为
2
2
3
点评:本题考查线面垂直的判断,考查线面角,解题的关键是掌握线面垂直的判定定理,正确作出线面角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图放置的边长为1的正三角形PAB沿x轴滚动,设顶点A(x,y)的纵坐标与横坐标的函数关系式是y=f(x),则f(x)在区间[-2,1]上的解析式是
 
;(说明:“正三角形PAB沿x轴滚动”包括沿x轴正方向和沿x轴负方向滚动.沿x轴正方向滚动指的是先以顶点A为中心顺时针旋转,当顶点B落在x轴上时,再以顶点B为中心顺时针旋转,如此继续;类似地,正三角形PAB也可以沿x轴负方向逆时针滚动)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•洛阳一模)如图放置的边长为1的正三角形ABC沿x轴的正方向滚动,设顶点A(x,y)的纵坐标与横坐标的函数关系是y=f(x).则f(x)在两个相邻零点间的图象与x轴围成的面积是
3
+
3
4
3
+
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,过正方形ABCD的中心O作OP⊥平面ABCD,已知正方形的边长为2,OP=2,连接AP、BP、CP、DP,M、N分别是AB、BC的中点,以O为原点,射线OM、ON、OP分别为Ox轴、Oy轴、Oz轴的正方向建立空间直角坐标系.若E、F分别为PA、PB的中点,求A、B、C、D、E、F的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图放置的边长为2的正方形PABC沿x轴滚动.设顶点P(x,y)的纵坐标与横坐标的函数关系是y=f(x),则f(x)的最小正周期为
 
;  y=f(x)在其两个相邻零点间的图象与x轴所围区域的面积为
 

(说明:“正方形PABC 沿x轴滚动”包括沿x轴正方向和沿x轴负方向滚动.沿x轴正方向滚动指的是先以顶点A为中心顺时针旋转,当顶点B落在x轴上时,再以顶点B为中心顺时针旋转,如此继续.类似地,正方形PABC可以沿x轴负方向滚动.)

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省四校联考高三(上)期末数学试卷(解析版) 题型:填空题

如图放置的边长为1的正三角形PAB沿x轴滚动,设顶点A(x,y)的纵坐标与横坐标的函数关系式是y=f(x),则f(x)在区间[-2,1]上的解析式是    ;(说明:“正三角形PAB沿x轴滚动”包括沿x轴正方向和沿x轴负方向滚动.沿x轴正方向滚动指的是先以顶点A为中心顺时针旋转,当顶点B落在x轴上时,再以顶点B为中心顺时针旋转,如此继续;类似地,正三角形PAB也可以沿x轴负方向逆时针滚动)

查看答案和解析>>

同步练习册答案