精英家教网 > 高中数学 > 题目详情
4、设函数f(x)=x2+mx(x∈R),则下列命题中的真命题是(  )
分析:从函数的奇偶性的定义进行判断,对于f(x)=x2+mx,不论m为何值时,定义域总是R,故而只需求出f(-x)和-f(x),即f(-x)=(-x)2+m(-x)=x2-mx,-f(x),若函数为奇函数,则f(-x)=-f(x),即x2-mx=-x2-mx恒成立,而x2-mx=-x2-mx恒成立是不可能,故不论m为何值均不能使f(x)为奇函数;若函数为偶函数,则f(-x)=f(x),即x2+mx=x2-mx恒成立,故只需要m为0时即可
解答:解:由题意知函数的定义域均为R
若函数为奇函数
则f(-x)=-f(x),
即x2-mx=-x2-mx恒成立,
而x2-mx=-x2-mx只有在x=0时才成立,而题中给出的x是一切实数,故x2-mx=-x2-mx恒成立是不可能,
故不论m为何值均不能使f(x)为奇函数;
若函数为偶函数,
则f(-x)=f(x),
即x2+mx=x2-mx恒成立,
故只需要m为0时即可
故选D
点评:本题考查了二次函数的性质,函数奇偶性的判断,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x2+|x-2|-1,x∈R.
(1)判断函数f(x)的奇偶性;
(2)求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)讨论f(x)的单调性.
(2)若f(x)有两个极值点x1,x2,且x1<x2,求f(x2)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲线y=f(x)在x=1处的切线为y=x,求实数m的值;
(2)当m=2时,若方程f(x)-h(x)=0在[1,3]上恰好有两个不同的实数解,求实数a的取值范围;
(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定义域内既有极大值又有极小值,求实数a的取值范围;
(3)求证:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步练习册答案