(本题满分12分)
已知函数,
(1)求为何值时,在上取得最大值;
(2)设,若是单调递增函数,求的取值范围.
(1)当时,在上取得最大值. (2) 。
【解析】本题主要考查导数的基本性质和应用、对数函数性质和平均值不等式等知识以及综合推理论证的能力,考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减
(I)先求出函数的定义域,然后对函数进行求导运算,令导函数等于0求出x的值,再判断函数的单调性,进而可求出最大值.
(Ⅱ)对函数f(x)进行求导,然后令导函数大于等于0在R上恒成立即可求出a的范围
请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分。
(1)
当时,;当时,.
在上是减函数,在上是增函数.
在上的最大值应在端点处取得.
即当时,在上取得最大值.………………5分
(2)是单调递增的函数,恒成立。
又,
显然在的定义域上,恒成立
,在上恒成立。
下面分情况讨论在上恒成立时,的解的情况
当时,显然不可能有在上恒成立;
当时,在上恒成立;
当时,又有两种情况:
①;
②且
由①得无解;由②得
综上所述各种情况,当时,在上恒成立
的取值范围为 ……………………12分
科目:高中数学 来源: 题型:
π | 2 |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题
(本题满分12分,第1小题6分,第2小题6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题
(本题满分12分)
设函数(,为常数),且方程有两个实根为.
(1)求的解析式;
(2)证明:曲线的图像是一个中心对称图形,并求其对称中心.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题
(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)
如图所示,直二面角中,四边形是边长为的正方形,,为上的点,且⊥平面
(Ⅰ)求证:⊥平面
(Ⅱ)求二面角的大小;
(Ⅲ)求点到平面的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com