精英家教网 > 高中数学 > 题目详情

【题目】己知AB分别为椭圆Cab0)的左右顶点,P为椭圆C上异于AB的任意一点,O为坐标原点,=﹣4PAB的面积的最大值为

1)求椭圆C的方程;

2)若椭圆C上存在两点MN,分别满足OMPAONPB,求|OM||ON|的最大值.

【答案】(1);(2)

【解析】

(1)根据数量积求得a22.再根据PAB的面积的最大值为可求得b1.

(2)Px0,y0)可证明,再设M),N)从而得出的关系,再利用三角函数与基本不等式的方法求最大值即可.

1)由,得﹣2a2=﹣4,即a22.当P为椭圆上、下顶点时,PAB面积最大,

,即b1.∴椭圆方程为

2)设Px0,y0),

M),N),由,

sinαsinβ+cosαcosβ0,∴cosαβ)=0,得,kZ

cos2βsin2α,sin2βcos2α

|OM||ON|

等号成立时,,比如M1,),N(﹣1,).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】直线与圆相交于两点,的面积达到最大时,________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某小区2017年1月至2018年1月当月在售二手房均价(单位:万元/平方米)的散点图.(图中月份代码1—13分别对应2017年1月—2018年1月)

由散点图选择两个模型进行拟合,经过数据处理得到两个回归方程分别为,并得到以下一些统计量的值:

残差平方和

0.000591

0.000164

总偏差平方和

0.006050

(1)请利用相关指数判断哪个模型的拟合效果更好;

(2)某位购房者拟于2018年6月份购买这个小区平方米的二手房(欲

购房为其家庭首套房).若购房时该小区所有住房的房产证均已满2年但未满5年,请你利用(1)中拟合效果更好的模型估算该购房者应支付的购房金额.(购房金额=房款+税费;房屋均价精确到0.001万元/平方米)

附注:根据有关规定,二手房交易需要缴纳若干项税费,税费是按房屋的计税价格进行征收.(计税价格=房款),征收方式见下表:

契税

(买方缴纳)

首套面积90平方米以内(含90平方米)为1%;首套面积90平方米以上且144平方米以内(含144平方米)为1.5%;面积144平方米以上或非首套为3%

增值税

(卖方缴纳)

房产证未满2年或满2年且面积在144平方米以上(不含144平方米)为5.6%;其他情况免征

个人所得税

(卖方缴纳)

首套面积144平方米以内(含144平方米)为1%;面积144平方米以上或非首套均为1.5%;房产证满5年且是家庭唯一住房的免征

参考数据:. 参考公式:相关指数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的极值点的个数;

2)当时,若存在实数,使得,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(选修4-4 坐标系与参数方程) 以平面直角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,设曲线C的参数方程为 (是参数),直线的极坐标方程为.

1)求直线的直角坐标方程和曲线C的普通方程;

2)设点P为曲线C上任意一点,求点P到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若存在极大值,证明:

2)若关于的不等式在区间上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既是偶函数,又在上单调递增的是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知ABC是长轴长为4的椭圆E上的三点,点A是长轴的一个端点,BC过椭圆中心O,且.

)求椭圆E的方程;

)设是以原点为圆心,短轴长为半径的圆,过椭圆E上异于其顶点的任一点P,作的两条切线,切点分别为MN,若直线MNx轴、y轴上的截距分别为mn,试计算的值是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,底面是正方形,平面,,的中点.

1)求证:平面平面;

2)求二面角的大小;

3)试判断所在直线与平面是否平行,并说明理由.

查看答案和解析>>

同步练习册答案