精英家教网 > 高中数学 > 题目详情
已知直线x-y+1=0经过椭圆S:
x2
a2
+
y2
b2
=1(a>b>0)
的一个焦点和一个顶点.
(1)求椭圆S的方程;
(2)如图,M,N分别是椭圆S的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k.
①若直线PA平分线段MN,求k的值;
②对任意k>0,求证:PA⊥PB.
(1)在直线x-y+1=0中令x=0得y=1;令y=0得x=-1,
由题意得c=b=1,
∴a2=2,
则椭圆方程为
x2
2
+y2=1

(2)①M(-
2
,0)
,N(0,-1),
M、N的中点坐标为(-
2
2
-
1
2
),
所以k=
2
2

②解法一:将直线PA方程y=kx代入
x2
2
+y2=1

解得x=±
2
1+2k2

2
1+2k2
=m

则P(m,mk),A(-m,-mk),于是C(m,0),
故直线AB方程为y=
0+mk
m+m
(x-m)=
k
2
(x-m)

代入椭圆方程得(k2+2)x2-2k2mx+k2m2-8=0,
xB+xA=
2k2m
k2+2

因此B(
m(3k2+2)
k2+2
mk3
k2+2
)

AP
=(2m,2mk)
PB
=(
m(3k2+2)
k2+2
-m,
mk3
k2+2
-mk)=(
2mk2
k2+2
-2mk
k2+2
)

AP
PB
=
2mk2
k2+2
×2m+
-2mk
k2+2
×2mk=0

PA
PB
,故PA⊥PB.
解法二:由题意设P(x0,y0),A(-x0,-y0),B(x1,y1),则C(x0,0),
∵A、C、B三点共线,
y1
x1-x0
=
y0
2x0
=
y1+y0
x1+x0

又因为点P、B在椭圆上,
x02
2
+y02=1
x12
2
+y12=1

两式相减得:kPB=-
x0+x1
2(y0+y1)

kPAkPB=
y0
x0
[-
x0+x1
2(y0+y1)
]
=-
(y1+y0)(x0+x1)
(x1+x0)(y0+y1)
=-1,
∴PA⊥PB.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知抛物线y=-
x2
2
与过点M(0,-1)的直线l相交于A、B两点,O为原点.若OA和OB的斜率之和为1.
(1)求直线l的方程;
(2)求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C1
x2
2
+y2=1
和圆C2x2+y2=1,左顶点和下顶点分别为A,B,且F是椭圆C1的右焦点.
(1)若点P是曲线C2上位于第二象限的一点,且△APF的面积为
1
2
+
2
4
,求证:AP⊥OP;
(2)点M和N分别是椭圆C1和圆C2上位于y轴右侧的动点,且直线BN的斜率是直线BM斜率的2倍,求证:直线MN恒过定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定点A(2,2),M在抛物线x2=4y上,M在抛物线准线上的射影是P点,则MP-MA的最大值为(  )
A.1B.
5
C.
7
D.5-2
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知焦距为4的椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
左、右顶点分别为A、B,椭圆C的右焦点为F,
过F作一条垂直于x轴的直线与椭圆相交于R、S,若线段RS的长为
10
3

(1)求椭圆C的方程;
(2)设Q(t,m)是直线x=9上的点,直线QA、QB与椭圆C分别交于点M、N,求证:直线MN必过x轴上的一定点,并求出此定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为e=
3
2
,直线x+y+1=0与椭圆交于P、Q两点,且OP⊥OQ,求该椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动圆过定点D(1,0),且与直线l:x=-1相切.
(1)求动圆圆心M的轨迹C;
(2)过定点D(1,0)作直线l交轨迹C于A、B两点,E是D点关于坐标原点O的对称点,求证:∠AED=∠BED.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线l与椭圆C:
x2
3
+
y2
2
=1
交于P(x1,y1),Q(x2,y2)两不同点,且△OPQ的面积S△OPQ=
6
2
,其中O为坐标原点.
(Ⅰ)证明x12+x22和y12+y22均为定值;
(Ⅱ)设线段PQ的中点为M,求|OM|•|PQ|的最大值;
(Ⅲ)椭圆C上是否存在点D,E,G,使得S△ODE=S△ODG=S△OEG=
6
2
?若存在,判断△DEG的形状;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知圆C:(x+1)2+y2=8,定点A(1,0),M为圆C上一动点,点P在线段AM上,点N在线段CM上,且满足
AM
=2
AP
NP
AM
=0
,点N的轨迹为曲线E.
(1)求曲线E的方程;
(2)若过定点F(0,2)的直线交曲线E于不同的两点G、H(点G在点F、H之间),且满足
FG
FH
,求λ
的取值范围.

查看答案和解析>>

同步练习册答案