精英家教网 > 高中数学 > 题目详情
12.甲,乙两人被随机分配到A,B,C三个不同的岗位(一个人只能去一个工作岗位),记分配到A岗位的人数为随机变量X,则随机变量X的数学期望E(X)=$\frac{2}{3}$,方差D(X)=$\frac{4}{9}$.

分析 X的可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列,进而能求出X的数学期望和方差.

解答 解:甲,乙两人被随机分配到A,B,C三个不同的岗位(一个人只能去一个工作岗位),
记分配到A岗位的人数为随机变量X,
则X的可能取值为0,1,2,
P(X=0)=$\frac{2×2}{3×3}$=$\frac{4}{9}$,
P(X=1)=$\frac{{C}_{1}^{1}{C}_{2}^{1}+{C}_{2}^{1}{C}_{1}^{1}}{3×3}$=$\frac{4}{9}$,
P(X=2)=$\frac{{C}_{2}^{2}}{3×3}$=$\frac{1}{9}$,
∴X的分布列为:

 X 0 1 2
 P $\frac{4}{9}$ $\frac{4}{9}$ $\frac{1}{9}$
E(X)=$0×\frac{4}{9}+1×\frac{4}{9}+2×\frac{1}{9}$=$\frac{2}{3}$,
D(X)=(0-$\frac{2}{3}$)2×$\frac{4}{9}$+(1-$\frac{2}{3}$)2×$\frac{4}{9}$+(2-$\frac{2}{3}$)2×$\frac{1}{9}$=$\frac{4}{9}$.
故答案为:$\frac{2}{3}$,$\frac{4}{9}$.

点评 本题考查离散型随机变量的数学期望和方差的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设x∈R,向量$\overrightarrow{a}$=(1,x),$\overrightarrow{b}$=(2,-4),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$•$\overrightarrow{b}$=(  )
A.-6B.$\sqrt{10}$C.$\sqrt{5}$D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知抛物线y2=2px(p>0)上一点M到焦点F的距离等于3p,则直线MF的斜率为(  )
A.±$\sqrt{5}$B.±1C.+$\frac{5}{2}$D.±$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.过点C(2,-1)且与直线x+y-3=0垂直的直线是(  )
A.x+y-1=0B.x+y+1=0C.x-y-3=0D.x-y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PCD⊥平面ABCD,BC=1,AB=2,$PC=PD=\sqrt{2}$,E为PA中点.
(Ⅰ)求证:PC∥平面BED;
(Ⅱ)求二面角A-PC-D的余弦值;
(Ⅲ)在棱PC上是否存在点M,使得BM⊥AC?若存在,求$\frac{PM}{PC}$的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某四棱锥的三视图如图所示,则该四棱锥的体积是(  )
A.36B.24C.12D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在公差为d的等差数列{an}中,“d>1”是“{an}是递增数列”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\left\{\begin{array}{l}{2-2x,0≤x<1}\\{lnx,1≤x≤e}\end{array}\right.$.
(1)求f(f($\sqrt{e}$));
(2)若x0满足f(f(x0))=x0,且f(x0)≠x0,则称x0为f(x)的二阶不动点,求函数f(x)的二阶不动点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.矩形ABCD沿BD将△BCD折起,使C点在平面ABD上投影在AB上,折起后下列关系:①△ABC是直角三角形;②△ACD是直角三角形;③AD∥BC;④AD⊥BC.其中正确的是(  )
A.①②④B.②③C.①③④D.②④

查看答案和解析>>

同步练习册答案