精英家教网 > 高中数学 > 题目详情
4.已知向量$\overrightarrow{a}$=(2,4),$\overrightarrow{b}$=(m,-1),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则实数m=2.

分析 直接由平面向量数量积的坐标表示列式求得m的值.

解答 解:∵$\overrightarrow{a}$=(2,4),$\overrightarrow{b}$=(m,-1),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,
∴2m+4×(-1)=0,即m=2.
故答案为:2.

点评 本题考查平面向量数量积的坐标运算,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知2x=3,y=log${\;}_{4}\frac{8}{3}$,利用换底公式,计算x+2y的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设集合M={x||x-1|≥2},集合N={x|log2x>1},则M∩N=[4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设f(x)=$\left\{\begin{array}{l}{2x+\frac{3}{2},x<0}\\{{2}^{-x},x≥0}\end{array}\right.$,则f(x)≥$\frac{1}{2}$集是[$-\frac{1}{2}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,△ABC中,|AB|=|AC|,D是BC边上任意一点,(D与B、C不重合),求证:|AB|2=|AD|2+|BD|•|DC|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)为R上的奇函数,当x>0时,f(x)=-2x2+3x+1,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设非空集合A={x|-2≤x≤a},B={y|y=2x+3,x∈A},C={y|y=x2,x∈A},全集U=R.
(1)若a=1,求(∁RC)∩B;
(2)若B∪C=B,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,内角A、B、C所对的边长分别为a、b、c,asinBcosC=$\frac{1}{2}$b-csinBcosA,且a>b,则B=30°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求证:函数f(x)=-$\frac{3}{2x}$-1在区间(-∞,0)上是单调增函数.

查看答案和解析>>

同步练习册答案