精英家教网 > 高中数学 > 题目详情
已知函数f(x)=alnx-x2,x=1是f(x)的一个极值点.
(1)求a的值;
(2)若方程f(x)+m=0在[
1
e
,e]内有两个不等实根,求m的取值范围(其中e为自然对数的底数);
(3)令g(x)=f(x)+3x,若g(x)的图象与x轴交于A(x1,0),B(x2,0)(其中x1<x2),求证:
5
2
<x2-x1
7
2
.(参考数据:ln2≈0.7 e≈2.7)
(1)求导函数可得f′(x)=
a
x
-2x=-
2x2-a
x
(x>0)
∵x=1是f(x)的一个极值点.
∴f′(1)=0,可得a=2.
(2)f(x)=2lnx-x2,令h(x)=f(x)+m=2lnx-x2+m,
则h′(x)=
2
x
-2x=-
2
x
(x-1)(x+1)

令h′(x)=0,得x=1(x=-1舍去).
由于x∈[
1
e
,e
],
则当x∈[
1
e
,1
]时,h′(x)>0,∴h(x)是增函数;
当x∈[1,e]时,h′(x)<0,∴h(x)是减函数,
则方程h(x)=0在[
1
e
,e
]内有两个不等实根的充要条件是:
h(
1
e
)≤0
h(1)>0
h(e)≤0.

1<m≤2+
1
e2

(3)若g(x)的图象与x轴交于A(x1,0),B(x2,0)(其中x1<x2),
则方程2lnx-x2+3x=0的解为x1,x2(其中x1<x2).
故函数y=2lnx与y=x2-3x的交点的横坐标为x1,x2
作出两函数图象如图.如图所示,
由于2ln
1
2
=-2ln2≈-1.4
(
1
2
)2-3×
1
2
=-
5
4
=-1.25
,所以
1
2
x1<1

同理得到
7
2
x2<4


-1<-x1<-
1
2
,所以
5
2
<x2-x1
7
2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分为14分)已知,().(Ⅰ)求出f(x)的极值点,并指出其是极大值点还是极小值点;(Ⅱ)若f(x)在区间上最大值是5,最小值是-11,求的解析式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设a∈R,f(x)=x3-x2-x+a,曲线y=f(x)与x轴有且只有一个公共点,实数a的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

方程x3-6x2+9x+1=0的实根个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2ex
(1)求f(x)的极值.
(2)求f(x)在区间[t,0]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=x3+ax2-12x的导函数为f′(x),若f′(x)的图象关于y轴对称.
(I)求函数f(x)的解析式;
(Ⅱ)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=x+ax2+blnx,曲线y=f(x)过点P(1,0),且在点P处的切线斜率为2.
(Ⅰ)求a,b的值;
(Ⅱ)求f(x)的极值点;
(Ⅲ)对定义域内任意一个x,不等式f(x)≤2x-2是否恒成立,若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=2a,f′(2)=-b,其中常数a,b∈R.
(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程.
(Ⅱ)设g(x)=f′(x)e-x.求函数g(x)的极值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则在闭区间上的最小值是(       )
A.B.C.D.

查看答案和解析>>

同步练习册答案