精英家教网 > 高中数学 > 题目详情

已知椭圆C:+=1(a>b>0)的一个顶点A(2,0),离心率为,直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程.
(2)当△AMN的面积为时,求k的值.

(1) +=1    (2) k=±1

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示,已知圆C与y轴相切于点T(0,2),与x轴正半轴相交于两点M,N(点M在点N的右侧),且|MN|=3,已知椭圆D:+=1(a>b>0)的焦距等于2|ON|,且过点(,).

(1)求圆C和椭圆D的方程;
(2)若过点M斜率不为零的直线l与椭圆D交于A、B两点,求证:直线NA与直线NB的倾斜角互补.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点在椭圆:上,以为圆心的圆与轴相切于椭圆的右焦点,且,其中为坐标原点.
(1)求椭圆的方程;
(2)已知点,设是椭圆上的一点,过两点的直线轴于点,若, 求直线的方程;
(3)作直线与椭圆:交于不同的两点,,其中点的坐标为,若点是线段垂直平分线上一点,且满足,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的中心在坐标原点,焦点在x轴上且过点P,离心率是.
(1)求椭圆C的标准方程;
(2)直线l过点E (-1,0)且与椭圆C交于AB两点,若|EA|=2|EB|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直线l:y=x+b与抛物线C:x2=4y相切于点A.

(1)求实数b的值.
(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

己知⊙O:x2+y2=6,P为⊙O上动点,过P作PM⊥x轴于M,N为PM上一点,且
(1)求点N的轨迹C的方程;
(2)若A(2,1),B(3,0),过B的直线与曲线C相交于D、E两点,则是否为定值?若是,求出该值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

P(x0,y0)(x0≠±a)是双曲线E:-=1(a>0,b>0)上一点,M,N分别是双曲线E的左,右顶点,直线PM,PN的斜率之积为.
(1)求双曲线的离心率.
(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足+,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线Cy2=2px(p>0)的焦点为F,抛物线C与直线l1y=-x的一个交点的横坐标为8.
(1)求抛物线C的方程;
(2)不过原点的直线l2l1垂直,且与抛物线交于不同的两点AB,若线段AB的中点为P,且|OP|=|PB|,求△FAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆M=1(a>)的右焦点为F1,直线lxx轴交于点A,若=2 (其中O为坐标原点).
(1)求椭圆M的方程;
(2)设P是椭圆M上的任意一点,EF为圆Nx2+(y-2)2=1的任意一条直径(EF为直径的两个端点),求·的最大值.

查看答案和解析>>

同步练习册答案