A. | $\frac{{20\sqrt{5}π}}{3}$ | B. | 8π | C. | 20π | D. | $4\sqrt{3}π$ |
分析 正三棱锥的顶点正好是球心,底面为一个小圆,求出小圆半径、三棱锥的高,可得球的半径,即可求出球的体积.
解答 解:正三棱锥的顶点正好是球心,底面为一个小圆,因正△ABC的边长为$2\sqrt{3}$,所以小圆半径r=2,
又因${V_{O-ABC}}=\sqrt{3}$,所以三棱锥的高h=1,
设球半径为R,则$R=\sqrt{{r^2}+{h^2}}=\sqrt{5}$,${V_球}=\frac{4}{3}π{R^3}=\frac{4}{3}π×{(\sqrt{5})^3}=\frac{{20\sqrt{5}π}}{3}$,
故选A.
点评 本题考查球的体积,考查学生的计算能力,求出球的半径是关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0 | B. | -1 | C. | -2 | D. | -3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{2π}{3}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{4}{3}$ | B. | $-\frac{4}{3}$ | C. | $\frac{3}{4}$ | D. | $-\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com