精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥S﹣ABCD中,底面ABCD是直角梯形,侧棱SA⊥底面ABCD,AB垂直于AD和BC,SA=AB=BC=2,AD=1.M是棱SB的中点.
(Ⅰ)求证:AM∥面SCD;
(Ⅱ)求面SCD与面SAB所成二面角的余弦值;
(Ⅲ)设点N是直线CD上的动点,MN与面SAB所成的角为θ,求sinθ的最大值.

【答案】解:(Ⅰ)以点A为原点建立如图所示的空间直角坐标系,

则A(0,0,0),B(0,2,0),D(1,0,0,),S(0,0,2),M(0,1,1).

设平面SCD的法向量是 ,则 ,即
令z=1,则x=2,y=﹣1.于是
,∴
又∵AM平面SCD,∴AM∥平面SCD.
(Ⅱ)易知平面SAB的法向量为 .设平面SCD与平面SAB所成的二面角为α,
= = ,即
∴平面SCD与平面SAB所成二面角的余弦值为
(Ⅲ)设N(x,2x﹣2,0),则
= = =
,即 时,
【解析】(Ⅰ)通过建立空间直角坐标系,利用平面SCD的法向量 即可证明AM∥平面SCD;(Ⅱ)分别求出平面SCD与平面SAB的法向量,利用法向量的夹角即可得出;(Ⅲ)利用线面角的夹角公式即可得出表达式,进而利用二次函数的单调性即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设不等式﹣2<|x﹣1|﹣|x+2|<0的解集为M,a、b∈M,
(1)证明:| a+ b|<
(2)比较|1﹣4ab|与2|a﹣b|的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,某街道居委会拟在EF地段的居民楼正南方向的空白地段AE上建一个活动中心,其中AE=30米.活动中心东西走向,与居民楼平行.从东向西看活动中心的截面图的下部分是长方形ABCD,上部分是以DC为直径的半圆.为了保证居民楼住户的采光要求,活动中心在与半圆相切的太阳光线照射下落在居民楼上的影长GE不超过2.5米,其中该太阳光线与水平线的夹角θ满足
(1)若设计AB=18米,AD=6米,问能否保证上述采光要求?
(2)在保证上述采光要求的前提下,如何设计AB与AD的长度,可使得活动中心的截面面积最大?(注:计算中π取3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若将函数 的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数g(x)=a﹣x2 ≤x≤e,e为自然对数的底数)与h(x)=2lnx的图象上存在关于x轴对称的点,则实数a的取值范围是( )
A.[1, +2]
B.[1,e2﹣2]
C.[ +2,e2﹣2]
D.[e2﹣2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为9元,被随机分配为1.49元,1.31元,2.19元,3.40元,0.61元,共5份,供甲、乙等5人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于4元的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥P﹣ABCD的底面为直角梯形,AB⊥AD,CD⊥AD,CD=2AB.点E是PC的中点.
(Ⅰ)求证:BE∥平面PAD;
(Ⅱ)已知平面PCD⊥底面ABCD,且PC=DC.在棱PD上是否存在点F,使CF⊥PA?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,函数f(x)=
(Ⅰ)求函数y=f(x)图象的对称轴方程;
(Ⅱ)若方程f(x)= 在(0,π)上的解为x1 , x2 , 求cos(x1﹣x2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O为坐标原点,F是椭圆C: =1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为(  )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案