精英家教网 > 高中数学 > 题目详情
12.计算:$\frac{1}{2}{log_2}3\frac{1}{2}{log_9}8$=$\frac{3}{8}$.

分析 利用导数换底公式化简求解即可.

解答 解:$\frac{1}{2}{log_2}3\frac{1}{2}{log_9}8$=$\frac{1}{2}•\frac{lg3}{lg2}•\frac{1}{2}•\frac{lg8}{lg9}$=$\frac{1}{4}•\frac{lg3}{lg2}•\frac{3lg2}{2lg3}$=$\frac{3}{8}$.
故答案为:$\frac{3}{8}$.

点评 本题考查了对数换底公式的应用以及对数的运算性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,圆A:(x+1)2+y2=16,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.
(1)证明:|EA|+|EB|为定值,并写出点E的轨迹方程;
(2)设点E的轨迹为曲线C,直线l交C1于M,N两点,过B且与l垂直的直线与元A交于P,Q两点,求四边形MPNQ面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在三棱柱ABC-A1B1C1中,侧棱A1A⊥底面ABC,∠ABC=$\frac{π}{2}$,D是棱AC的中点,且AB=BC=BB1=4.
(Ⅰ)求证:AB1∥平面BC1D;    
(Ⅱ)求异面直线AB1与BC1所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知$f(x)=3sin({ωx+\frac{π}{3}})$(ω>0),$f({\frac{π}{6}})=f({\frac{π}{3}})$,且f(x)在区间$({\frac{π}{6},\frac{π}{3}})$上有最小值,无最大值,则ω=$\frac{14}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合A={x|$\frac{1}{3}$≤($\frac{1}{3}$)x-1≤9},B={x|log2x<3}.
(Ⅰ) 求(∁RB)∪A;
(Ⅱ) 求C={x|x∈B,且x∉A}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图所示,在△ABC中,M在BC上,N在AM上,CM=CN,且$\frac{AM}{AN}$=$\frac{BM}{CN}$,下列结论中正确的是(  )
A.△ABM∽△ACBB.△ANC∽△AMBC.△ANC∽△ACMD.△CMN∽△BCA

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如果集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是(  )
A.0B.0 或1C.1D.0 或1或-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=lnx+x2-1,g(x)=ex-e
( I)试判断f(x)的单调性;
( II)若对于任意的x∈(1,+∞),mg(x)>f(x)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=x2•(1-3x)在(0,$\frac{1}{3}$)上的最大值是$\frac{1}{12}$.

查看答案和解析>>

同步练习册答案