精英家教网 > 高中数学 > 题目详情
10.已知a>0,b>0,若a+b=4,则(  )
A.a2+b2有最小值B.$\sqrt{ab}$有最小值C.$\frac{1}{a}+\frac{1}{b}$有最大值D.$\frac{1}{{\sqrt{a}+\sqrt{b}}}$有最大值

分析 根据基本不等式的性质判断即可.

解答 解:∵a>0,b>0,且a+b=4,
a2+b2=(a+b)2-2ab=16-2ab≥16-2$\sqrt{\frac{a+b}{2}}$=16-2$\sqrt{2}$,
有最小值,
故选:A.

点评 本题考察了基本不等式的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知实数a≠0,函数f(x)=$\left\{\begin{array}{l}{2x+a,x<1}\\{-x-2a,x≥1}\end{array}\right.$,若f(1-a)=f(1+a),则以直线x=a为准线的抛物线的标准方程是y2=-6x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.等比数列{an}中的a1,a2015是函数f(x)=$\frac{1}{3}$x3-4x2+4x-1的极值点,则log2a1+log2a2+…+log2a2015=(  )
A.4032B.4030C.2016D.2015

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.以(2,6)为圆心,1为半径的圆的标准方程为(x-2)2+(y-6)2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列函数中,是奇函数且在(0,+∞)上单调递增的为(  )
A.y=x2B.$y={x^{\frac{1}{3}}}$C.y=x-1D.$y={x^{-\frac{1}{2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.给出下列四个命题:
①某班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中另一位同学的编号为23;
②一组数据1,2,3,3,4,5的平均数、众数、中位数都相同;
③一组数据a,0,1,2,3,若该组数据的平均值为1,则样本的标准差为2;
④根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为$\stackrel{∧}{y}$=a+bx中,b=2,$\overline{x}$=1,$\overline{y}$=3,则a=1.其中真命题为(  )
A.①②④B.②④C.②③④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=3,BC=4,AA1=4,点D是AB的中点,
(1)求证:AC⊥BC1
(2)求证:AC1∥平面CDB1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在二项式${(\root{3}{x}-\frac{1}{x})^8}$的展开式中,常数项的值为28.(结果用数字表示)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.无穷等比数列{an}(n∈N*)的首项a1=1,公比q=$\frac{1}{3}$,则前n项和Sn的极限$\underset{lim}{n→∞}$Sn=$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案