精英家教网 > 高中数学 > 题目详情

设集合D={平面向量},定义在D上的映射f,满足对任意x∈D,均有f(x)=λx(λ∈R且λ≠0).若|a|=|b|且a,b不共线,则[f(a)-f(b)]·(a+b)=    .若A(1,2),B(3,6),C(4,8),且f()=,则λ=    .

【解析】由已知f(a)=λa,f(b)=λb,

又|a|=|b|,

∴[f(a)-f(b)]·(a+b)

=λ(a-b)·(a+b)

=λ(|a|2-|b|2)=0.

=(2,4),=(-1,-2),f()=

∴λ(2,4)=(-1,-2)得λ=-.

答案:0 -

练习册系列答案
相关习题

科目:高中数学 来源:福建省安溪梧桐中学、俊民中学2011-2012学年高二下学期期末联合质检数学理科试题 题型:044

在中学阶段,对许多特定集合(如实数集、复数集以及平面向量集等)的学习常常是以定义运算(如四则运算)和研究运算律为主要内容.现设集合A由全体二元有序实数组组成,在A上定义一个运算,记为⊙,对于A中的任意两个元素α=(a,b),β=(c,d),规定:α⊙β=(ad+bc,bd-ac).

(1)计算:(2,3)⊙(-1,4);

(2)请用数学符号语言表述运算⊙满足交换律,并给出证明;

(3)若“A中的元素I=(x,y)”是“对,都有α⊙I=I⊙α=α成立”的充要条件,试求出元素I.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年度高三数学试题分类汇编:集合与简易逻辑 题型:044

在中学阶段,对许多特定集合(如实数集、复数集以及平面向量集等)的学习常常是以定义运算(如四则运算)和研究运算律为主要内容.现设集合A由全体二元有序实数组组成,在A上定义一个运算,记为⊙,对于A中的任意两个元素α=(a,b),β=(c,d),规定:α⊙β

(Ⅰ)计算:(2,3)⊙(-1,4);

(Ⅱ)请用数学符号语言表述运算⊙满足交换律和结合律,并任选其一证明;

(Ⅲ)A中是否存在唯一确定的元素I满足:对于任意α∈A,都有α⊙I=I⊙α=α成立,若存在,请求出元素I;若不存在,请说明理由;

(Ⅳ)试延续对集合A的研究,请在A上拓展性地提出一个真命题,并说明命题为真的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合D={平面向量},定义在D上的映射f,满足对任意x∈D,均有f(x)=λx(λ∈R且λ≠0).若|a|=|b|且a,b不共线,则[f(a)-f(b)]·(a+b)=    .若A(1,2),B(3,6),C(4,8),且f()=,则λ=    .

查看答案和解析>>

科目:高中数学 来源:新课标高三数学平面向量专项训练(河北) 题型:填空题

设集合D={平面向量},定义在D上的映射f,满足对任意x∈D,均有f(x)=λx(λ∈R且λ≠0).若|a|=|b|且a、b不共线,则(f(a)-f(b))·(a+b)=________;若A(1,2),B(3,6),C(4,8),且f()=,则λ=______

查看答案和解析>>

同步练习册答案