(本题满分10分)
已知函数(a为常数,且a∈R).
(1)若函数f (x)的最小值为2,求a的值;
(2)当a=2时,解不等式f (x)≤6.
(1)a=0或a=-4(2)
解析试题分析:(Ⅰ)f (x)=|x-a|+|x+2|=| a-x |+|x+2|
≥|a-x+x+2|=|a+2|,
由|a+2|=2,解得a=0或a=-4. ……5分(Ⅱ)f (x)= |x-2|+|x+2|.
当x<-2时,不等式为2-x-x-2≤6,其解为-3≤x<-2;
当-2≤x<2时,不等式为2-x+x+2≤6恒成立,其解为-2≤x<2;
当x≥2时,不等式为x-2+x+2≤6,其解为2≤x≤3;
所以不等式f (x)≤6的解集为[-3,3]. ……10分
如有其它解法,相应给分.
考点:本小题主要考查绝对值不等式的性质和绝对值不等式的解法,考查学生的运算求解能力.
点评:含绝对值的不等式越来越成为高考的考点和热点问题,要准确掌握,灵活应用.
科目:高中数学 来源: 题型:解答题
已知函数f(x)=|x-2|+2|x-a|(a∈R).
(I)当a=1时,解不等式f(x)>3;
(II)不等式在区间(-∞,+∞)上恒成立,求实数a的取值范围
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com