精英家教网 > 高中数学 > 题目详情
在△ABC中,a,b,c分别是A,B,C所对的边,若sinAsinBcosC=sinCsinAcosB+sinBsinCcosA,则
ab
c2
的最大值为
 
考点:正弦定理的应用
专题:解三角形
分析:原式化简可得sinAsinBcosC=sinCsinC,由正弦定理可推得c2=
a2+b2
3
,故有
ab
c2
=
3ab
a2+b2
3ab
2ab
=
3
2
解答: 解:因为sinAsinBcosC=sinCsinAcosB+sinBsinCcosA,
所以sinAsinBcosC=sinCsin(A+B),
所以sinAsinBcosC=sinCsinC,
由正弦定理得
ab
c2
=
1
cosC
=
2ab
a2+b2-c2

所以c2=
a2+b2
3

所以
ab
c2
=
2ab
a2+b2-c2
=
3ab
a2+b2
3ab
2ab
=
3
2

故答案为:
3
2
点评:本题主要考察了正弦定理的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是定义为在R上的奇函数,当x≥0时,f(x)=
1
2
(|x-a2|+|x-2a2|-3a2),若x∈R,都有f(x-1)≤f(x+1)成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
f(10+x)  (x<0)
(
1
2
)
x
  (0≤x<2)
f(x-2)  (x≥2)
,则f(-2011)的值为(  )
A、2
B、8
C、
1
2
D、
1
8

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2x-
a
x
的定义域为(0,1](a为实数).
(1)当a=1时,求函数y=f(x)的值域;
(2)若函数y=f(x)在定义域上是减函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读下列程序,并指出当a=3,b=-5时的计算结果(  )
A、a=-1,b=4
B、a=0.5,b=-1.25
C、a=3,b=-5
D、a=-0.5,b=1.25

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在区域{(x,y)|x≥0,y≥0}内植树,第一棵树在A1(0,1)点,第二棵树在B1(1,1)点,第三棵树在C1(1,0)点,第四棵树在C2(2,0)点,接着按图中箭头方向,每隔一个单位种一棵树,那么,第2011棵树所在的点的坐标是(  )
A、(13,44)
B、(12,44)
C、(13,43)
D、(14,43)

查看答案和解析>>

科目:高中数学 来源: 题型:

设U是全集,集合A,B满足A?B,则下列式子中不成立的是(  )
A、A∪B=B
B、A∪(∁UB)=U
C、(∁UA)∪B=U
D、A∩B=A

查看答案和解析>>

科目:高中数学 来源: 题型:

设方程|x2-3|=a的解的个数为m,则m不可能等于(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

如果命题“¬(p∨q)”是假命题,则下列说法正确的是(  )
A、p、q均为真命题
B、p、q中至少有一个为真命题
C、p、q均为假命题
D、p、q中至少有一个为假命题

查看答案和解析>>

同步练习册答案