精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆)的离心率为,点在椭圆上

(1)求椭圆的方程;

(2)过椭圆上的焦点作两条相互垂直的弦,求的取值范围.

【答案】(1)(2)

【解析】试题分析:

(1)由题意求得 . 则椭圆方程为.

(2) 当直线中一条直线斜率不存在时, =.否则,联立直线与椭圆的方程可得: .换元之后结合二次函数的性质可得 的取值范围是.

试题解析:

解:(1)因为,所以.

在椭圆上,所以.

联立上述方程,解得 .

所以椭圆方程为.

(2)当直线中一条直线斜率不存在时, =.

当直线斜率均存在时,

不妨设直线的斜率为,显然,则

联立,得

,则 .

由于直线的斜率为,用代换上式中的可得

于是 .

,则=

因为

所以 .

综上所述, 的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨),一位居民的月用水量不超过的部分按平价收费,超过的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照 分成9组,制成了如图所示的频率分布直方图.

(Ⅰ)求直方图中的值;

(Ⅱ)若将频率视为概率,从该城市居民中随机抽取3人,记这3人中月均用水量不低于3吨的人数为,求的分布列与数学期望.

(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值(精确到0.01),并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A、B、C的 对边分别为a、b、c,且
(1)求 的值;
(2)若 ,求tanA及tanC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知与曲线相切的直线,与轴, 轴交于两点, 为原点, ,( .

1)求证: 相切的条件是: .

2)求线段中点的轨迹方程;

3)求三角形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是2017年第一季度五省情况图,则下列陈述正确的是( )

①2017年第一季度 总量和增速均居同一位的省只有1个;

②与去年同期相比,2017年第一季度五个省的总量均实现了增长;

③去年同期的总量前三位是江苏、山东、浙江;

④2016年同期浙江的总量也是第三位.

A. ①② B. ②③④ C. ②④ D. ①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=cosπx的图象与函数y=( |x1|(﹣3≤x≤5)的图象所有交点的横坐标之和等于(
A.4
B.6
C.8
D.10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆),的两个焦点 ,点在此椭圆上.

1)求椭圆的方程;

2)过点的直线与椭圆相交于两点,设点,记直线的斜率分别为,求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若讨论的单调性;

(Ⅱ)若过点可作函数图象的两条不同切线,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x)=sin(2x+ ),下列命题: ①函数图象关于直线x=﹣ 对称;
②函数图象关于点( ,0)对称;
③函数图象可看作是把y=sin2x的图象向左平移个 单位而得到;
④函数图象可看作是把y=sin(x+ )的图象上所有点的横坐标缩短到原来的 倍(纵坐标不变)而得到;其中正确的命题是

查看答案和解析>>

同步练习册答案