科目:高中数学 来源: 题型:填空题
函数是定义在R上的奇函数,且满足对一切都成立,又当时,,则下列四个命题:
①函数是以4为周期的周期函数
②当时,
③函数的图象关于x = 1对称
④函数的图象关于点(2,0)对称
其中正确命题序号是_______________.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,ABCD是正方形空地,边长为30m,电源在点P处,点P到边AD、AB距离分别为9m,3m.某广告公司计划在此空地上竖一块长方形液晶广告屏幕MNEF,MN:NE=16:9.线段MN必须过点P,端点M,N分别在边AD,AB上,设AN=x(m),液晶广告屏幕MNEF的面积为S(m2).
(1)用x的代数式表示AM,并写出x的取值范围;
(2)求S关于x的函数关系式.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数= (,
(1)当时,判断函数在定义域上的单调性;
(2)若函数与的图像有两个不同的交点,求的取值范围。
(3)设点和(是函数图像上的两点,平行于的切线以为切点,求证.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某地需要修建一条大型输油管道通过240公里宽的沙漠地带,该段输油管道两端的输油站已建好,余下工程是在该段两端已建好的输油站之间铺设输油管道和等距离修建增压站(又称泵站).经预算,修建一个增压站的工程费用为400万元,铺设距离为公里的相邻两增压站之间的输油管道费用为万元.设余下工程的总费用为万元.
(1)试将表示成的函数;
(2)需要修建多少个增压站才能使最小,其最小值为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知二次函数,,的最小值为.
⑴求函数的解析式;
⑵设,若在上是减函数,求实数的取值范围;
⑶设函数,若此函数在定义域范围内不存在零点,求实数的取值范围.[
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com