精英家教网 > 高中数学 > 题目详情
15.已知向量$\overrightarrow a=(2,4,x)$,$\overrightarrow b=(2,y,2)$,若$\overrightarrow a∥\overrightarrow b$,则x+y=6.

分析 根据向量共线及横坐标相同可得两向量相等,从而得出x,y的值.

解答 解:∵$\overrightarrow{a}∥\overrightarrow{b}$,且它们的横坐标相同,
∴$\overrightarrow{a}=\overrightarrow{b}$,
∴x=2,y=4,
∴x+y=6,
故答案为6.

点评 本题考查了空间向量的位置关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.某校高三年级在学期末进行的质量检测中,考生数学成绩情况如下表所示:
数学成绩[90,105)[105,120)[120,135)[135,150]
文科考生5740246
理科考生123xyz
已知用分层抽样方法在不低于135分的考生中随机抽取5名考生进行质量分析,其中文科考生抽取了1名.
(1)求z的值;
(2)如图是文科不低于135分的6名学生的数学成绩的茎叶图,计算这6名考生的数学成绩的方差;
(3)已知该校数学成绩不低于120分的文科理科考生人数之比为1:3,不低于105分的文科理科考生人数之比为2:5,求理科数学及格人数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若抛物线y2=2x上的一点到其准线的距离为2,则该点的坐标可以是(  )
A.$({\frac{1}{2}\;\;,\;\;1})$B.$({1\;\;,\;\;\sqrt{2}})$C.$({\frac{3}{2}\;\;,\;\;\sqrt{3}})$D.(2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知向量$\overrightarrow{a}$=(3,m),$\overrightarrow{b}$=(1,-2),若$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{b}$2,则m=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知F1(-c,0)、F2(c、0)分别是椭圆G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{5}$=1(a>0)的左、右焦点,点P是椭圆上一点,且PF2⊥F1F2,|PF1|-|PF2|=$\frac{3a}{2}$.
(1)求椭圆G的方程;
(2)直线l与椭圆G交于两个不同的点M,N.
(i)若直线l的斜率为1,且不经过椭圆G上的点C(4,n),其中n>0,求证:直线CM与CN关于直线x=4对称.
(ii)若直线l过F2,点B是椭圆G的上顶点,是否存在直线l,使得△BF2M与△BF2N的面积的比值为2?如果存在,求出直线l的方程;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若曲线x2+y2+a2x+(1-a2)y-4=0关于直线y=x对称的曲线仍是其本身,则实数a为(  )
A.$\frac{1}{2}$或$-\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$或$-\frac{{\sqrt{2}}}{2}$C.$\frac{1}{2}$或$-\frac{{\sqrt{2}}}{2}$D.$-\frac{1}{2}$或$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知不等式|x-m|<|x|的解集为(1,+∞).
(1)求实数m的值;
(2)若不等式$\frac{a-5}{x}<|{1+\frac{1}{x}}|-|{1-\frac{m}{x}}|<\frac{a+2}{x}$对x∈(0,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知△ABC是边长为3的等边三角形,点P是以A为圆心的单位圆上一动点,点Q满足$\overrightarrow{AQ}$=$\frac{2}{3}$$\overrightarrow{AP}$+$\frac{1}{3}$$\overrightarrow{AC}$,则|$\overrightarrow{BQ}$|的最小值是$\frac{3\sqrt{7}-2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且$\sqrt{3}a=2csinA$.
(1)确定角C的大小;
(2)若$c=\sqrt{7}$,且△ABC的面积为$\frac{{3\sqrt{3}}}{2}$,求△ABC的周长.

查看答案和解析>>

同步练习册答案