精英家教网 > 高中数学 > 题目详情
若a,b∈R,则下面四个式子中恒成立的是(  )
A.lg(1+a2)>0B.a2+b2≥2(a-b-1)
C.a2+3ab>2b2D.<
B
在B中,∵a2+b2-2(a-b-1)=(a2-2a+1)+(b2+2b+1)=(a-1)2+(b+1)2≥0,∴a2+b2≥2(a-b-1)恒成立.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(1)求证:当时,
(2)证明: 不可能是同一个等差数列中的三项.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

用反证法证明:已知,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示的多面体中, 是菱形,是矩形,平面

(1)求证:平面平面
(2)若二面角为直二面角,求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

法国数学家费马观察到221+1=5222+1=17223+1=257224+1=65537都是质数,于是他提出猜想:任何形如22n+1(n∈N*)的数都是质数,这就是著名的费马猜想.半个世纪之后,善于发现的欧拉发现第5个费马数225+1=4294967297=641×
6
700417
不是质数,从而推翻了费马猜想,这一案例说明(  )
A.归纳推理,结果一定不正确
B.归纳推理,结果不一定正确
C.类比推理,结果一定不正确
D.类比推理,结果不一定正确

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

有一段“三段论”推理:对于可导函数f(x),若f(x)在区间(a,b)上是增函数,则f′(x)>0对x∈(a,b)恒成立,因为函数f(x)=x3在R上是增函数,所以f′(x)=3x2>0对x∈R恒成立.以上推理中(  )
A.大前提错误B.小前提错误
C.推理形式错误D.推理正确

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,(其中
(1)求
(2)试比较的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若a,b,c是不全相等的正数,给出下列判断:
①(a-b)2+(b-c)2+(c-a)2≠0;
②a>b与a<b及a=b中至少有一个成立;
③a≠c,b≠c,a≠b不能同时成立.
其中判断正确的是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)观察下列各式:
  
请你根据上述特点,提炼出一个一般性命题(写出已知,求证),并用分析法加以证明。
(2)命题,函数单调递减,
命题上为增函数,若“”为假,“”为真,求实数的取值范围。

查看答案和解析>>

同步练习册答案