精英家教网 > 高中数学 > 题目详情
(本小题满分12分) 已知圆过两点,且圆心上.
(1)求圆的方程;
(2)设是直线上的动点,是圆的两条切线,为切点,求四边形面积的最小值.
(1) (x-1)2+(y-1)2=4. (2) S=2=2=2.

试题分析:(1)根据题意,设出圆心(a,b),然后圆过两点,其中垂线必定过圆心,且圆心上.联立直线的方程组得到交点坐标即为圆心坐标,进而两点距离公式求解半径,得到圆的方程。
(2)因为四边形PAMB的面积S=SPAM+SPBM=|AM|·|PA|+|BM|·|PB|,根据两个三三角形的底相同,高相等,那么即可知S=2|PA|,只需要求解切线长|PA|的最小值即可。
解:(1)设圆的方程为:(x-a)2+(y-b)2=r2(r>0).
根据题意,得          ﹍﹍﹍﹍﹍﹍﹍3分
解得a=b=1,r=2,                           ﹍﹍﹍﹍﹍﹍﹍5分
故所求圆M的方程为(x-1)2+(y-1)2=4.          ﹍﹍﹍﹍﹍﹍﹍6分
(2)因为四边形PAMB的面积S=SPAM+SPBM|AM|·|PA|+|BM|·|PB|,
又|AM|=|BM|=2,|PA|=|PB|, 所以S=2|PA|,     ﹍﹍﹍﹍﹍﹍﹍8分而|PA|=,  即S=2.
因此要求S的最小值,只需求|PM|的最小值即可,
即在直线3x+4y+8=0上找一点P,使得|PM|的值最小,﹍﹍﹍﹍﹍﹍﹍9分
所以|PM|min=3,                  ﹍﹍﹍﹍﹍﹍﹍10分
所以四边形PAMB面积的最小值为S=2=2=2. ﹍﹍﹍12分
点评:结合该试题的关键是理解圆心和半径是求解圆的方程核心,同时直线与圆相切时,构成的四边形的面积问题,能否转化为一条切线和一个半径以及一个圆心到圆外一点P的三角形的面积的最值,最终化简为只需要求解切线长|PA|的最小值即可。。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知圆C的半径为,圆心在直线上,且被直线截得的弦长为,求圆C的方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知从点发出的一束光线,经轴反射后,反射光线恰好平分圆:的圆周,则反射光线所在的直线方程为   .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是圆的动弦,且,则中点的轨迹方程是          

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)过点Q 作圆C:的切线,切点为D,且QD=4.
(1)求的值;
(2)设P是圆C上位于第一象限内的任意一点,过点P作圆C的切线l,且l交x轴于点A,交y 轴于点B,设,求的最小值(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)在直角坐标系xOy中,曲线C1的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值.
(1)求曲线C1的方程;
(2)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于
点A,B和C,D.证明:当P在直线x=﹣4上运动时,四点A,B,C,D的纵坐标之积为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在平面直角坐标系中,直线AB交x、y轴于点,一圆心位于(0,3),半径为3的动圆沿x轴向右滚动,动圆每6秒滚动一圈,则动圆与直线AB第一次相切时所用的时间为         秒.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过点作直线与圆相交于两点,那么的最小值为(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知圆,过点的直线,则的位置关系是___________(填“相交”、“相切”、“相离”或“三种位置关系均有可能”).

查看答案和解析>>

同步练习册答案