精英家教网 > 高中数学 > 题目详情

【题目】已知函数的图象过点和点.

1)求函数的最大值与最小值;

2)将函数的图象向左平移个单位后,得到函数的图象;已知点,若函数的图象上存在点,使得,求函数图象的对称中心.

【答案】1的最大值为2,最小值为;(2.

【解析】

1)由行列式运算求出,由函数图象过两点,求出,得函数解析式,化函数式为一个角的一个三角函数式,可求得最值;

2)由图象变换写出表达式,它的最大值是2,因此要满足条件,只有图象上,由此可求得,结合余弦函数的性质可求得对称中心.

1)易知,则由条件,得

解得 .

故函数的最大值为2,最小值为

2)由(1)可知: .

于是,当且仅当的图象上时满足条件.

. ,得

. ,得

于是,函数图象的对称中心为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图:在四棱锥中, 平面,底面是正方形, .

(1)求异面直线所成角的大小(结果用反三角函数值表示);

(2)求点分别是棱的中点,求证: 平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆)的右焦点为,短轴的一个端点的距离等于焦距.

1)求椭圆的标准方程;

2)设是四条直线所围成的矩形在第一、第二象限的两个顶点,是椭圆上任意一点,若,求证:为定值;

3)过点的直线与椭圆交于不同的两点,且满足△与△的面积的比值为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线,直线l的参数方程为:t为参数),直线l与曲线C分别交于两点.

1)写出曲线C和直线l的普通方程;

2)若点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系中两个定点,如果对于常数,在函数的图像上有且只有6个不同的点,使得成立,那么的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆,定义椭圆C相关圆E:.若抛物线的焦点与椭圆C的右焦点重合,且椭圆C的短轴长与焦距相等.

1)求椭圆C及其相关圆E的方程;

2)过相关圆E上任意一点P作其切线l,若l 与椭圆交于A,B两点,求证:为定值(为坐标原点);

3)在(2)的条件下,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是无穷等比数列,若的每一项都等于它后面所有项的倍,则实数的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(管道构成Rt△FHE,H是直角项点)来处理污水.管道越长,污水净化效果越好.设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上.已知AB=20米,AD=米,记∠BHE=

(1)试将污水净化管道的长度L表示为的函数,并写出定义域;

(2)当取何值时,污水净化效果最好?并求出此时管道的长度L.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在长方体中,AD=2AB=AE=1M为矩形AEHD内的一点,如果∠MGF=MGHMG和平面EFG所成角的正切值为那么点M到平面EFGH的距离是_____.

查看答案和解析>>

同步练习册答案