精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin(θ+)= ,曲线C的参数方程为 (α为参数).

(1)求直线l的普通方程;

(2)若P是曲线C上的动点,求点P到直线l的最大距离及点P的坐标.

【答案】(1)x+y﹣5=0.(2)P(0,﹣1).距离最大值

【解析】试题分析:(1)根据 将直线l的极坐标方程化为直角坐标方程(2)根据点到直线距离公式得三角函数关系式,再根据三角函数有界性确定最大值以及对应点P的坐标.

试题解析:解:(1)直线l的极坐标方程为ρsin(θ+)=

展开可得:(sinθ+cosθ)=

可得x+y﹣5=0.

(2)曲线C的参数方程为(α为参数).可设P(1+cosα,sinα).

则点P到直线l的距离d==2sin

当sin=﹣1时,d取得最大值3

取α=,可得P(0,﹣1).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设G为△ABC的重心,过G作直线l分别交线段AB,AC(不与端点重合)于P,Q.若
(1)求 + 的值;
(2)求λμ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省2016年高中数学学业水平测试的原始成绩采用百分制,发布成绩使用等级制.各等级划分标准如下:85分及以上,记为A等;分数在[70,85)内,记为B等;分数在[60,70)内,记为C等;60分以下,记为D等.同时认定A,B,C为合格,D为不合格.已知某学校学生的原始成绩均分布在[50,100]内,为了了解该校学生的成绩,抽取了50名学生的原始成绩作为样本进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出样本频率分布直方图如图所示.

(Ⅰ)求图中x的值,并根据样本数据估计该校学生学业水平测试的合格率;

(Ⅱ)在选取的样本中,从70分以下的学生中随机抽取3名学生进行调研,用X表示所抽取的3名学生中成绩为D等级的人数,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】面对全球范围内日益严峻的能源形势与环保压力,环保与低碳成为今后汽车发展的一大趋势,越来越多的消费者对新能源汽车表示出更多的关注,某研究机构从汽车市场上随机抽取N辆纯电动汽车调查其续航里程(单次充电后能行驶的最大里程),被调查汽车的续航里程全部介于100公里和450公里之间,根据调查数据形成了如图所示频率分布表及频率分布直方图.

频率分布表

分组

频数

频率

[100,150)

1

0.05

[150,200)

3

0.15

[200,250)

x

0.1

[250,300)

6

0.3

[300,350)

4

0.2

[350,400)

3

y

[400,450]

1

0.05

合计

N

1

(1)试确定频率分布表中x,y,N的值,并补全频率分布直方图;

(2)若从续航里程在[200,250)及[350,400)的车辆中随机抽取2辆车,求两辆车续航里程都在[350,400)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中,且.

(1)值;

(2)为自然对数的底数,求证:当时,

(3)若函数上的单调函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点.

(Ⅰ)求椭圆的方程;

(Ⅱ)已知椭圆的左焦点为直线与椭圆交于不同两点都在轴上方),.

(ⅰ)若点的横坐标为1,求的面积;

(ⅱ)直线是否恒过定点?若过定点,求出该定点的坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某社区为丰富居民节日活动,组织了迎新春象棋大赛,已知由1,2,3号三位男性选手和4,5号两位女性选手组成混合组参赛.已知象棋大赛共有三轮,设三位男性选手在一至三轮胜出的概率依次是;两名女性选手在一至三轮胜出的概率依次是.

(Ⅰ)若该组五名选手与另一组选手进行小组淘汰赛,每名选手只比赛一局,共五局比赛,求该组两名女性选手的比赛次序恰好不相邻的概率;

(Ⅱ)若一位男性选手因身体不适退出比赛,剩余四人参加个人比赛,比赛结果相互不影响,设表示该组选手在四轮中胜出的人数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行节日促销活动,消费满一定数额即可获得一次抽奖机会,抽奖这可以从以下两种方式中任选一种进行抽奖.

抽奖方式①:让抽奖者随意转动如图所示的圆盘,圆盘停止后指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为,边界忽略不计)即中奖.

抽奖方式②:让抽奖者从装有3个白球和3个红球的盒子中一次性摸出2个球(球除颜色外不加区分),如果摸到的是2个红球,即中奖.

假如你是抽奖者,为了让中奖的可能性大,你应该选择哪一种抽奖方式?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题:(1)函数f(x)在[0,+∞)上是增函数,在(﹣∞,0)上也是增函数,所以f(x)在R上是增函数;(2)若函数f(x)=ax2+bx+2与x轴没有交点,则b2﹣8a<0,且a>0; (3)y=x2﹣2|x|﹣3的递增区间为[1,+∞);(4)函数y=lg10x和函数y=elnx表示相同函数.其中正确命题的个数是(
A.3
B.2
C.1
D.0

查看答案和解析>>

同步练习册答案