精英家教网 > 高中数学 > 题目详情

选做题:请考生在下列两题中任选一题作答,若两题都做,则按所做的第一题评阅计分.
(1)(几何证明选讲选做题) 如图,平行四边形ABCD的对角线AC和BD交于点O,OE与BC和AB的延长线分别交于点E和F,若AB=2,BC=3,BF=1,则BE=________.
(2)(坐标系与参数方程选做题) 若直线数学公式
与直线数学公式(s为参数)垂直,则k=________.

解:(1)如图所示:将FO延长与AD相交于M,设BE=x,∵BE∥AD,∴
∴DM=x,
又∵AB=2,BF=1,∴,∴AM=3x,∵AD=BC=3,∴x+3x=3,∴.∴BE=
故答案
(2)将两直线的参数方程分别化为普通方程:l1:y-2=(x-1); l2:y-1=-2x,可知直线l1的斜率k1=,直线l2的斜率k2=-2,
∵l1⊥l2,∴k1×k2=-1,即,解得k=-1.
故答案为-1.
分析:(1)本题先延长FO与AD相较于M点,由AD∥BC,即可得比例式:,进而可求的BE的长.
(2)将直线的参数方程化为普通方程,即可得出直线的斜率,利用两直线垂直的条件可得两直线的斜率乘积等于-1,即可求出k的值.
点评:本题一是考查了利用平行线分线段成比例,一是考查给出两垂直的直线参数方程求斜率的乘积为-1,恰当的作出辅助线和准确画参数方程为普通方程是解决问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

选做题(请考生在下列两题中任选一题作答,若两题都做,则接所做的第一题计分)
(l)(坐标系与参数方程选做题)在直角坐标系xoy中,曲线C1参数方程
x=cosa
y=1+sina
(a为参数),在极坐标系(与直角坐标系xoy相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C2的方程为p(cosθ-sinθ)+1=0,则曲线C1与 C2的交点个数为
2
2

(2)(不等式选做题)若关于x的不等式ax2-|x-1|+2a<0的解集为空集,则a的取值范围是
a
3
+1
4
a
3
+1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题:请考生在下列两题中任选一题作答.若两题都做,则按做的第一题评阅计分.本题共5分.
(1)(坐标系与参数方程选做题)若曲线的极坐标方程为ρ=2sinθ+4cosθ,以极点为原点,极轴为x轴正半轴建立直角坐标系,则该曲线的直角坐标方程为
x2+y2-4x-2y=0
x2+y2-4x-2y=0

(2)(不等式选择题)对于实数x,y,若|x-1|≤1,|y-2|≤1,则|x-2y+1|的最大值为
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题(请考生在下列两题中任选一题作答,若两题都做,则按所做的第一题评阅计分)
(1)已知圆的极坐标方程为ρ=2cosθ,则该圆的圆心到直线ρsinθ+2ρcosθ=1的距离是
5
5
5
5

(2)若关于x的不等式|a-1|+2≥|x+1|+|x-3|存在实数解,则实数a的取值范围是
(-∞,-1]∪[3,+∞)
(-∞,-1]∪[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题:请考生在下列两题中任选一题作答,若两题都做,则按所做的第一题评阅计分.
(1)(坐标系与参数方程选做题) 在极坐标系下,已知直线l的方程为ρcos(θ-
π
3
)=
1
2
,则点M(1,
π
2
)到直线l的距离为
3
-1
2
3
-1
2

(2)(几何证明选讲选做题) 如图,P为圆O外一点,由P引圆O的切线PA与圆O切于A点,引圆O的割线PB与圆O交于C点.已知AB⊥AC,PA=2,PC=1.则圆O的面积为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题(请考生在下列两题中任选一题作答,若两题都做,则按做的第一题评阅计分)
(1)(极坐标与参数方程)在直角坐标系xOy中,圆C的参数方程为
x=-
2
+rcosθ
y=-
2
+rsinθ
(θ为参数,r>0).以O为极点,x轴正半轴为极轴,并取相同的单位长度建立极坐标系,直线l的极坐标方程为ρsin(θ+
π
4
)=1
.当圆C上的点到直线l的最大距离为4时,圆的半径r=
1
1

(2)(不等式)对于任意实数x,不等式|2x+m|+|x-1|≥a恒成立时,若实数a的最大值为3,则实数m的值为
4或-8
4或-8

查看答案和解析>>

同步练习册答案