精英家教网 > 高中数学 > 题目详情

【题目】已知函数为常数,),且数列是首项为2,公差为2的等差数列.

(1)若,当时,求数列的前项和

(2)设,如果中的每一项恒小于它后面的项,求的取值范围.

【答案】(1);(2).

【解析】

试题分析:(1)用等差数列求和公式,结合对数的运算性质可得:,从而有,最后用错位相减法结合等比数列的求和公式,得到数列的前项和;(2)由题意不等式对一切成立,代入的表达式并化简可得.通过讨论单调性可得当时,的最小值是,从而得到,结合,得到实数的取值范围是

试题解析:(1)由题意,即

时,

,得

(2)由(1)知,,要使,对一切成立,

对一切成立,

,对一切恒成立,

只需

单调递增,时,,且

综上所述,存在实数满足条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数为奇函数,为常数.

求实数的值;

求函数的单调区间;

若对于区间上的每一个值,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别是直线上的两个动点,线段的长为的中点.

(1)求动点的轨迹的方程;

(2)若过点(1,0)的直线与曲线交于不同两点

时,求直线的方程;

试问在轴上是否存在点,使恒为定值?若存在,求出点的坐标及定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,点是直线的一动点,过点作圆的切线,切点为.

(1)当切线的长度为时,求点的坐标;

(2) 的外接圆为圆,试问:当在直线上运动时,圆是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由.

(3)求线段长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时,若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.

(1)用每天生产的卫兵个数与骑兵个数表示每天的利润(元);

(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的单调区间;

(2)是否存在实数,使函数上有最小值2?若存在,求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,内角的对边分别为,已知.

(1)求角的值;

(2),当取最小值时,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数是自然对数的底数,曲线在点处的切线与轴平行

1的值

2的单调区间

3其中的导函数证明:对任意

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正四面体的顶点分别在两两垂直的三条射线 上,则在下列命题中,错误的是( )

A. 是正三棱锥

B. 直线与平面相交

C. 直线与平面所成的角的正弦值为

D. 异面直线所成角是

查看答案和解析>>

同步练习册答案