精英家教网 > 高中数学 > 题目详情

已知正项等差数列的前项和为,若,且成等比数列.
(Ⅰ)求的通项公式;
(Ⅱ)记的前项和为,求.

(Ⅰ);(Ⅱ)

解析试题分析:(Ⅰ)由可得,即;又成等比数列,得,综合起来可求得即可.(Ⅱ)由已知可求出,即数列{}是由等差数列和等比数列组合而成,前项和为可由错位相减法求得.
试题解析:(Ⅰ)∵,即,∴,所以,       2分
又∵成等比数列,
,即,                         4分
解得,(舍去),
,故;                                         6分
(Ⅱ)法1:
,      ①
得,     ②
②得,

.                       12分
考点:1.等差数列和等比数列的性质;2. 求数列前n项和.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知等差数列{}的首项a1=1,公差d>0,且分别是等比数列{}的b2,b3,b4
(I)求数列{}与{{}的通项公式;
(Ⅱ)设数列{}对任意自然数n均有成立,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,.
(1)证明:数列是等比数列,并求数列的通项公式;
(2)在数列中,是否存在连续三项成等差数列?若存在,求出所有符合条件的项;若不存在,请说明理由;
(3)若,求证:使得成等差数列的点列在某一直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列是首项为1,公差为2的等差数列,数列的前n项和
(I)求数列的通项公式;
(II)设, 求数列的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设集合W是满足下列两个条件的无穷数列的集合:①对任意恒成立;②对任意,存在与n无关的常数M,使恒成立.
(1)若是等差数列,是其前n项和,且试探究数列与集合W之间的关系;
(2)设数列的通项公式为,且,求M的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足,且,其中为数列的前项和,又,对任意都成立。
(1)求数列的通项公式;
(2)求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,,数列中,,且点在直线上.
(Ⅰ)求数列的通项公式;
(Ⅱ)求数列的通项公式;
(Ⅲ)若,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线的方程为,数列满足,其前项和为,点在直线上.
(1)求数列的通项公式;
(2)在之间插入个数,使这个数组成公差为的等差数列,令,试证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列中,对任意成立,令,且是等比数列.
(1)求实数的值;
(2)求数列的通项公式;
(3)求证:.

查看答案和解析>>

同步练习册答案