精英家教网 > 高中数学 > 题目详情
若函数f(x)的导数是f′(x)=-x(x+1),则函数g(x)=f(ax-1)(a<0)的单调减区间是
1
a
,0)
1
a
,0)
分析:根据复合函数的求导法则求出g′(x),然后解不等式g′(x)<0即得减区间,注意a<0.
解答:解:因为f′(x)=-x(x+1),
所以g′(x)=af′(ax-1)=-a(ax-1)(ax-1+1)=-a2x(ax-1)=-a3x(x-
1
a
),
又a<0,所以解g′(x)<0,得
1
a
<x<0.
所以g(x)的单调减区间为:(
1
a
,0).
故答案为:(
1
a
,0).
点评:本题考查利用导数研究函数的单调性问题,属中档题,注意复合函数的求导方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)的导数是f'(x)=-x(ax+1)(a<0),则函数f(x)的单调减区间是(  )
A、[
1
a
,0]
B、(-∞,0],[
1
a
,+∞)
C、[0,-
1
a
]
D、(-∞,0],[-
1
a
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题,其中正确命题的序号是
 

①函数y=sin(2x+
π
6
)
的图象可由函数y=sin2x的图象向左平移
π
6
单位得到;
②△ABC中,a,b,c分别是角A,B,C的对边,已知A=60°,a=7,则b+c不可能等于15;
③若函数f(x)的导数为f'(x),f(x0)为f(x)的极值的充要条件是f'(x0)=0;
④在同一坐标系中,函数y=sinx的图象和函数y=x的图象只有一个公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列叙述中:
①在△ABC中,若cosA<cosB,则A>B;
②若函数f(x)的导数为f′(x),f(x0)为f(x)的极值的充要条件是f′(x0)=0;
③函数y=sin(2x+
π
6
)
的图象可由函数y=sin2x的图象向左平移
π
6
个单位得到;
④在同一直角坐标系中,函数f(x)=sinx的图象与函数f(x)=x的图象仅有三个公共点.
其中正确叙述的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的导数是f'(x)=-x(x+1),则函数g(x)=f(ax-1)(a<0)的单调减区间是(  )

查看答案和解析>>

同步练习册答案