精英家教网 > 高中数学 > 题目详情
设函数f(x)的定义域、值域均为R,f(x)的反函数为f-1(x),且对任意实数x,均有,定义数列an:a=8,a1=10,an=f(an-1),n=1,2,….
(1)求证:
(2)设bn=an+1-2an,n=0,1,2,….求证:(n∈N*);
(3)是否存在常数A和B,同时满足①当n=0及n=1时,有成立;②当n=2,3,…时,有成立.如果存在满足上述条件的实数A、B,求出A、B的值;如果不存在,证明你的结论.
【答案】分析:(1)在已知中,令x=an,利用函数、反函数求值知识,根据an=f(an-1)则f-1(an)=an-1,化简整理即可证得;
(2)将(1)变形构造,得出,即有(n∈N*),连续递推即可证得;
(3)先由①解得A=B=4,再用数学归纳法证明若②能同时成立,则存在,且A=B=4,否则不存在.
解答:解:(1)∵,令x=an,∴

(2)∵,∴
.∵b=a1-2a=-6,
(n∈N*).
(3)由(2)可知:
假设存在常数A和B,使得对n=0,1成立,
,解得A=B=4.
下面用数学归纳法证明对一切n≥2,n∈N成立.
1°当n=2时,由,得
∴n=2时,成立.
2°假设n=k(k≥2),不等式成立,即
==
即是说当n=k+1时,不等式也成立.
所以存在A,B,且A=B=4.
点评:本题考查反函数的概念、不等式的证明、数学归纳法的应用,考查变形转化构造、归纳推理、分析解决、计算等能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-
3
2
)与b=f(
15
2
)的大小关系为
a>b
a>b

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为D,若对于任意x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数.设函数f(x)为定义在[0,1]上的非减函数,且满足以下三个条件:①f(0)=0;②f(1-x)+f(x)=1,x∈[0,1]; ③当x∈[0,
1
4
]
时,f(x)≥2x恒成立.则f(
3
7
)+f(
5
9
)
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-数学公式)与b=f(数学公式)的大小关系为________.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年安徽省蚌埠二中高三(上)12月月考数学试卷(文科)(解析版) 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-)与b=f()的大小关系为   

查看答案和解析>>

科目:高中数学 来源:山东省月考题 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x﹣cosx,则a=f(﹣)与b=f()的大小关系为(    ).

查看答案和解析>>

同步练习册答案