精英家教网 > 高中数学 > 题目详情
20.对任意的x≥2,都有(x+a)|x+a|+(ax)|x|≤0,则a的最大值是-1.

分析 由题意可得,x≥2时,(x+a)|x+a|+(ax)•x≤0恒成立,分类讨论,求得a的范围,可得a的最大值.

解答 解:对任意的x≥2,都有(x+a)|x+a|+(ax)|x|≤0,即 x≥2时,(x+a)|x+a|+(ax)•x≤0恒成立.
①若x+a≥0,即a≥-2时,则有(x+a)2+ax2≤0,∴(a+1)x2+2ax+a2≤0.
令f(x)=(a+1)x2+2ax+a2,则有a+1=0,或$\left\{\begin{array}{l}{a+1<0}\\{-\frac{2a}{2(a+1)}<2}\\{f(2)=4(a+1)+4a{+a}^{2}≤0}\end{array}\right.$,
求得a=-1,或-4-2$\sqrt{3}$≤a≤-4+2$\sqrt{3}$,综合可得-4-2$\sqrt{3}$≤a≤-2 或a=-1.
②若x+a<0,即a<-2时,则有-(x+a)2+ax2≤0,∴(a-1)x2-2ax-a2≤0.
令g(x)=(a-1)x2-2ax-a2,则它的图象的对称轴为x=$\frac{a}{a-1}$<0,g(2)=-4-a2≤0恒成立.
即此时,a的范围为 a<-2.
③若x+a=0,即a=-x≤-2 时,则由题意可得ax2≤0,满足条件.
综合①②③可得,a≤-2或-4-2$\sqrt{3}$≤a≤-2 或a=-1,故a的最大值为-1,
故答案为:-1.

点评 本题主要考查绝对值不等式的解法,分段函数的应用,二次函数的性质,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知M是椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{16}$=1上的点,若F1,F2是椭圆的两个焦点,则|MF1|+|MF2|=(  )
A.6B.8C.18D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.等差数列{an}的首项a1=1,其前n项和为Sn,且a3+a5=a4+7.
(Ⅰ)求{an}的通项公式;
(Ⅱ)求满足不等式Sn<3an-2的n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知集合M={x|-1≤x≤7},集合N={x|k+1≤x≤2k-1},若M∩N=∅,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$中,已知a=4,b=3,则双曲线的离心率为(  )
A.$\frac{5}{4}$B.$\frac{{\sqrt{7}}}{4}$C.$\frac{5}{3}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.化简$\sqrt{1-si{n}^{2}160°}$=(  )
A.cos20°B.-cos20°C.±cos20°D.±|cos20°|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,$AC=2\sqrt{3}$,$A{A_1}=\sqrt{3}$,AB=2,点D在棱B1C1上,且B1C1=4B1D.
(Ⅰ)求证:BD⊥A1C;
(Ⅱ)求二面角B-A1D-B1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设数列{an}的前n项和为Sn,已知Sn+1=pSn+q(n∈N*,p,q为常数),a1=2,a2=1,a3=q-3p.
(1)求p,q的值;
(2)求数列{an}的通项公式;
(3)记集合M={n|λ≥$\frac{{S}_{n}}{n{a}_{n}}$,n∈N*},若M中仅有3个元素,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设条件p:-1<x<5,条件q:0<x<a,其中a为正数,若p是q的必要不充分条件,则a的取值范围为(  )
A.(0,5]B.(0,5)C.[5,+∞)D.(5,+∞)

查看答案和解析>>

同步练习册答案