9£®ÒÑÖª¶¨µãO£¨0£¬0£©£¬A£¨3£¬0£©£¬¶¯µãPµ½¶¨µãO¾àÀëÓëµ½¶¨µãAµÄ¾àÀëµÄ±ÈÖµÊÇ$\frac{1}{\sqrt{¦Ë}}$£®
£¨¢ñ£©Ç󶯵ãPµÄ¹ì¼£·½³Ì£¬²¢ËµÃ÷·½³Ì±íʾµÄÇúÏߣ»
£¨¢ò£©µ±¦Ë=4ʱ£¬¼Ç¶¯µãPµÄ¹ì¼£ÎªÇúÏßD£®F£¬GÊÇÇúÏßDÉϲ»Í¬µÄÁ½µã£¬¶ÔÓÚ¶¨µãQ£¨-3£¬0£©£¬ÓÐ|QF|•|QG|=4£®ÊÔÎÊÎÞÂÛF£¬GÁ½µãµÄλÖÃÔõÑù£¬Ö±ÏßFGÄܺãºÍÒ»¸ö¶¨Ô²ÏàÇÐÂð£¿ÈôÄÜ£¬Çó³öÕâ¸ö¶¨Ô²µÄ·½³Ì£»Èô²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©É趯µãPµÄ×ø±êΪ£¨x£¬y£©£¬ÓÉ$\sqrt{¦Ë}$|PO|=|PA|´úÈë×ø±êÕûÀíµÃ£¨¦Ë-1£©x2+£¨¦Ë-1£©y2+6x-9=0£¬¶Ô¦Ë·ÖÀàÌÖÂۿɵã»
£¨¢ò£©µ±¦Ë=4ʱ£¬ÇúÏßDµÄ·½³ÌÊÇx2+y2+2x-3=0£¬ÔòÓÉÃæ»ýÏàµÈµÃµ½|QF|•|QG|sin¦È=d|FG|£¬ÇÒÔ²µÄ°ë¾¶r=2£¬Óɵ㵽ֱÏߵľàÀ빫ʽÒÔ¼°Ö±ÏߺÍÔ²µÄλÖùØϵ¿ÉµÃ£®

½â´ð ½â£º£¨¢ñ£©É趯µãPµÄ×ø±êΪ£¨x£¬y£©£¬
ÔòÓÉ$\sqrt{¦Ë}$|PO|=|PA|µÃ¦Ë£¨x2+y2£©=£¨x-3£©2+y2£¬
ÕûÀíµÃ£º£¨¦Ë-1£©x2+£¨¦Ë-1£©y2+6x-9=0£¬
¡ß¦Ë£¾0£¬¡àµ±¦Ë=1ʱ£¬·½³Ì¿É»¯Îª£º2x-3=0£¬·½³Ì±íʾµÄÇúÏßÊÇÏ߶ÎOAµÄ´¹Ö±Æ½·ÖÏߣ»
µ±¦Ë¡Ù1ʱ£¬Ôò·½³Ì¿É»¯Îª£¬$£¨x+\frac{3}{¦Ë-1}£©^{2}$+y2=$£¨\frac{3\sqrt{¦Ë}}{¦Ë-1}£©^{2}$£¬
¼´·½³Ì±íʾµÄÇúÏßÊÇÒÔ£¨-$\frac{3}{¦Ë-1}$£¬0£©ÎªÔ²ÐÄ£¬$\frac{3\sqrt{¦Ë}}{|¦Ë-1|}$Ϊ°ë¾¶µÄÔ²£®
£¨¢ò£©µ±¦Ë=4ʱ£¬ÇúÏßDµÄ·½³ÌÊÇx2+y2+2x-3=0£¬
¹ÊÇúÏßD±íʾԲ£¬Ô²ÐÄÊÇD£¨-1£¬0£©£¬°ë¾¶ÊÇ2£®
ÉèµãQµ½Ö±ÏßFGµÄ¾àÀëΪd£¬¡ÏFQG=¦È£¬
ÔòÓÉÃæ»ýÏàµÈµÃµ½|QF|•|QG|sin¦È=d|FG|£¬ÇÒÔ²µÄ°ë¾¶r=2£®
¼´d=$\frac{4sin¦È}{|FG|}$=$\frac{4sin¦È}{2rsin¦È}$=1£®ÓÚÊǶ¥µãQµ½¶¯Ö±ÏßFGµÄ¾àÀëΪ¶¨Öµ£¬
¼´¶¯Ö±ÏßFGÓ붨Բ£¨x+3£©2+y2=1ÏàÇУ®

µãÆÀ ±¾Ì⿼²é²ÎÊý·½³ÌºÍ¼«×ø±ê·½³Ì£¬Éæ¼°·ÖÀàÌÖÂÛµÄ˼Ï룬ÊôÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÔÚ¡÷ABCÖУ¬ÒÑÖª½ÇA¡¢B¡¢CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÇÒtanAtanC=$\frac{1}{2cosAcosC}$+1£®
£¨1£©ÇóBµÄ´óС£»
£¨2£©Èô$\overrightarrow{BA}$•$\overrightarrow{BC}$=$\frac{1}{2}$b2£¬ÊÔÅжϡ÷ABCµÄÐÎ×´£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®º¯Êýy=£¨$\frac{1}{2}$£©x-log2xµÄÁãµãΪx0£¬Ôò£¨¡¡¡¡£©
A£®x0£¼1B£®x0£¾3C£®2£¼x0£¼3D£®1£¼x0£¼2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÔË«ÇúÏß$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1µÄ×ó½¹µãΪԲÐÄ£¬ÇÒ¾­¹ý´ËË«ÇúÏßÓÒ¶¥µãµÄÔ²µÄ±ê×¼·½³ÌΪ£¨¡¡¡¡£©
A£®£¨x-3£©2+y2=25B£®£¨x-3£©2+y2=16C£®£¨x+3£©2+y2=16D£®£¨x+3£©2+y2=25

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªº¯Êýf£¨x£©=cosxsin£¨x+$\frac{¦Ð}{3}$£©-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$£®
£¨1£©Çóf£¨x£©µÄµ¥µ÷ÔöÇø¼ä£»
£¨2£©Çóf£¨x£©ÔÚÇø¼ä[0£¬$\frac{¦Ð}{2}$]ÉϵÄ×î´óÖµºÍ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªº¯Êýf£¨x£©=loga$\frac{x-5}{x+5}$£¬£¨a£¾0ÇÒa¡Ù1£©£®
£¨1£©ÅжÏf£¨x£©µÄÆæżÐÔ£¬²¢¼ÓÒÔÖ¤Ã÷£»
£¨2£©ÊÇ·ñ´æÔÚʵÊýmʹµÃf£¨x+2£©+f£¨m-x£©Îª³£Êý£¿Èô´æÔÚ£¬Çó³ömµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÔ²C£ºx2+y2-6x+5=0£¬µãA£¬BÔÚÔ²ÉÏ£¬ÇÒAB=2$\sqrt{3}$Ôò|$\overrightarrow{OA}+\overrightarrow{OB}$|µÄÈ¡Öµ·¶Î§ÊÇ[4£¬8]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Æ½ÃæÏòÁ¿$\overrightarrow a£¬\overrightarrow{b£¬}$$\overrightarrow e$Âú×ã$|{\overrightarrow e}|=1£¬\overrightarrow a•\overrightarrow e=1£¬\overrightarrow b•\overrightarrow e=2£¬|{\overrightarrow a-\overrightarrow b}$|=2£¬µ±$|{\overrightarrow a}$|=$\frac{\sqrt{7}}{2}$£¬$|{\overrightarrow b}$|=$\frac{\sqrt{19}}{2}$ʱ£¬$\overrightarrow a•\overrightarrow b$µÄ×îСֵΪ$\frac{5}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Éè$\overrightarrow{a_k}=£¨{cos\frac{k¦Ð}{6}£¬sin\frac{k¦Ð}{6}+cos\frac{k¦Ð}{6}}£©£¬k¡ÊZ£¬Ôò\overrightarrow{{a_{2015}}}•\overrightarrow{{a_{2016}}}$=£¨¡¡¡¡£©
A£®$\sqrt{3}$B£®$\sqrt{3}-\frac{1}{2}$C£®$2\sqrt{3}-1$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸