【题目】眼保健操是一种眼睛的保健体操,主要是通过按摩眼部穴位,调整眼及头部的血液循环,调节肌肉,改善眼的疲劳,达到预防近视等眼部疾病的目的.某学校为了调查推广眼保健操对改善学生视力的效果,在应届高三的全体800名学生中随机抽取了100名学生进行视力检查,并得到如图的频率分布直方图.
(1)若直方图中后三组的频数成等差数列,试估计全年级视力在5.0以上的人数;
(2)为了研究学生的视力与眼保健操是否有关系,对年级不做眼保健操和坚持做眼保健操的学生进行了调查,得到下表中数据,根据表中的数据,能否在犯错的概率不超过0.005的前提下认为视力与眼保健操有关系?
(3)在(2)中调查的100名学生中,按照分层抽样在不近视的学生中抽取8人,进一步调查他们良好的护眼习惯,在这8人中任取2人,记坚持做眼保健操的学生人数为X,求X的分布列和数学期望.
附:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
【答案】(1)(2)能在犯错误的概率不超过0.005的前提下认为视力与眼保健操有关系(3)详见解析
【解析】
(1)由题意可计算后三组的频数的总数,由其成等差数列可得后三组频数,可得视力在5.0以上的频率,可得全年级视力在5.0以上的的人数;
(2)由题中数据计算的值,对照临界值表可得答案;
(3)由题意可计算出这8人中不做眼保健操和坚持做眼保健操的分别有2人和6人,可得
X可取0,1,2,分别计算出其概率,列出分布列,可得其数学期望.
解:(1)由图可知,第一组有3人,第二组7人,第三组27人,因为后三组的频数成等差数列,共有(人)
所以后三组频数依次为24,21,18,
所以视力在5.0以上的频率为0.18,
故全年级视力在5.0以上的的人数约为人
(2),
因此能在犯错误的概率不超过0.005的前提下认为视力与眼保健操有关系.
(3)调查的100名学生中不近视的共有24人,从中抽取8人,抽样比为,这8人中不做眼保健操和坚持做眼保健操的分别有2人和6人,
X可取0,1,2,
,
X的分布列
X | 0 | 1 | 2 |
P |
X的数学期望.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(,t为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求直角坐标系下直线与曲线的普通方程;
(2)设直线与曲线交于点、(二者可重合),交轴于,若,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了丰富学生的课外文化生活,某中学积极探索开展课外文体活动的新途径及新形式,取得了良好的效果.为了调查学生的学习积极性与参加文体活动是否有关,学校对200名学生做了问卷调查,列联表如下:
参加文体活动 | 不参加文体活动 | 合计 | |
学习积极性高 | 80 | ||
学习积极性不高 | 60 | ||
合计 | 200 |
已知在全部200人中随机抽取1人,抽到学习积极性不高的学生的概率为.
(1)请将上面的列联表补充完整;
(2)是否有99.9%的把握认为学习积极性高与参加文体活动有关?请说明你的理由;
(3)若从不参加文体活动的同学中按照分层抽样的方法选取5人,再从所选出的5人中随机选取2人,求至少有1人学习积极性不高的概率.
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出以下几个结论:
①命题,,则,
②命题“若,则”的逆否命题为:“若,则”
③“命题为真”是“命题为真”的充分不必要条件
④若,则的最小值为4
其中正确结论的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学组织了“迎新杯”知识竞赛,随机抽取了120名考生的成绩(单位:分),并按[95,105),[105,115),[115,125),[125,135),[135,145]分成5组,制成频率分布直方图,如图所示.
(1)若规定成绩在120分以上的为优秀,估计样本中成绩优秀的考生人数;
(2)求该中学这次知识竞赛成绩的平均数与方差的估计值(同一组中的数据用该组区间的中点值作代表).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左焦点为,是椭圆上关于原点对称的两个动点,当点的坐标为时,的周长恰为.
(1)求椭圆的方程;
(2)过点作直线交椭圆于两点,且 ,求面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程:在平面直角坐标系中,曲线:(为参数),在以平面直角坐标系的原点为极点、轴的正半轴为极轴,且与平面直角坐标系取相同单位长度的极坐标系中,曲线:.
(1)求曲线的普通方程以及曲线的平面直角坐标方程;
(2)若曲线上恰好存在三个不同的点到曲线的距离相等,求这三个点的极坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com