精英家教网 > 高中数学 > 题目详情

【题目】为了实现绿色发展,避免能源浪费,某市计划对居民用电实行阶梯收费.阶梯电价原则上以住宅(一套住宅为一户)的月用电量为基准定价,具体划分标准如表:

阶梯级别

第一阶梯电量

第二阶梯电量

第三阶梯电量

月用电量范围(单位:

从本市随机抽取了100户,统计了今年6月份的用电量,这100户中用电量为第一阶梯的有20户,第二阶梯的有60户,第三阶梯的有20.

(1)现从这100户中任意选取2户,求至少1户用电量为第二阶梯的概率;

(2)以这100户作为样本估计全市居民的用电情况,从全市随机抽取3户,表示用电量为第二阶梯的户数,求的概率分布列和数学期望.

【答案】(1)(2)见解析

【解析】分析:(1)100户中任意抽取2户,至少1户月用电量为第二阶梯为事件利用对立事件可求.

(2)从全市任取1户,抽到用电量为第二阶梯的概率

即可求出的概率分布列和数学期望.

详解:

(1)100户中任意抽取2户,至少1户月用电量为第二阶梯为事件

(2)从全市任取1户,抽到用电量为第二阶梯的概率

所以

的分布列为

0

1

2

3

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在直角梯形中,分别是上的点,,且(如图①).将四边形沿折起,连接(如图②).在折起的过程中,下列说法中错误的个数是( )

平面

四点不可能共面;

③若,则平面平面

④平面与平面可能垂直.

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人做定点投篮游戏,已知甲每次投篮命中的概率均为,乙每次投篮命中的概率均为,甲投篮3次均未命中的概率为,甲、乙每次投篮是否命中相互之间没有影响.

(1)若甲投篮3次,求至少命中2次的概率;

(2)若甲、乙各投篮2次,设两人命中的总次数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设Sn为数列{an}的前n项和,Sn=(﹣1)nan ,n∈N* , 则
①a3=
②S1+S2+…+S100=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若,求证:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】( 2013湖南)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:

X

1

2

3

4

Y

51

48

45

42

这里,两株作物“相近”是指它们之间的直线距离不超过1米.
(1)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰 好“相近”的概率;
(2)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a为常数,函数f(x)=x(lnx﹣ax)有两个极值点x1 , x2(x1<x2)( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=(x﹣1)ex﹣kx2(k∈R).
(1)当k=1时,求函数f(x)的单调区间;
(2)当 时,求函数f(x)在[0,k]上的最大值M.

查看答案和解析>>

同步练习册答案