精英家教网 > 高中数学 > 题目详情
已知椭圆与直线相交于两点.
(1)若椭圆的半焦距,直线围成的矩形的面积为8,
求椭圆的方程;
(2)若为坐标原点),求证:
(3)在(2)的条件下,若椭圆的离心率满足,求椭圆长轴长的取值范围.
(1)
(2)结合韦达定理来加以证明,联立方程组得到。
(3)

试题分析:解:(1)由已知得:    解得          3分
所以椭圆方程为:            4分
(2)设,由

,得
                   7分
,得              8分
    
,故            9分
(3)由(2)得   由,得
                        12分
,∴
所以椭圆长轴长的取值范围为       14分
点评:主要是考查了直线与椭圆的位置关系的运用,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆方程为,过右焦点斜率为1的直线到原点的距离为.

(1)求椭圆方程.
(2)已知为椭圆的左右两个顶点,为椭圆在第一象限内的一点,为过点且垂直轴的直线,点为直线与直线的交点,点为以为直径的圆与直线的一个交点,求证:三点共线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

给定椭圆 ,称圆心在原点,半径为的圆是椭圆的“准圆”.若椭圆的一个焦点为,且其短轴上的一个端点到的距离为.
(Ⅰ)求椭圆的方程和其“准圆”方程;
(Ⅱ)点是椭圆的“准圆”上的一个动点,过动点作直线,使得与椭圆都只有一个交点,试判断是否垂直,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点在轴上,离心率,它的一个顶点恰好是抛物线的焦点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆与曲线的交点为,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆长轴长、短轴长和焦距成等差数列,则该椭圆的离心率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设AB是椭圆的长轴,点C在上,且,若AB=4,,则的两个焦点之间的距离为________

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆(a>b>0)的焦距为4,且与椭圆有相同的离心率,斜率为k的直线l经过点M(0,1),与椭圆C交于不同两点A、B.
(1)求椭圆C的标准方程;
(2)当椭圆C的右焦点F在以AB为直径的圆内时,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点P(4, 4),圆C:与椭圆E:有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.

(Ⅰ)求m的值与椭圆E的方程;(Ⅱ)设Q为椭圆E上的一个动点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知是长轴为的椭圆上三点,点是长轴的一个顶点,过椭圆中心,且.

(1)建立适当的坐标系,求椭圆方程;
(2)如果椭圆上两点使直线轴围成底边在轴上的等腰三角形,是否总存在实数使?请给出证明.

查看答案和解析>>

同步练习册答案