精英家教网 > 高中数学 > 题目详情
20.设函数f(x)=2$\sqrt{3}$sin(2ωx+$\frac{π}{3}$)-4cos2ωx+3(0<ω<2),且y=f(x)的图象的一条对称轴为x=$\frac{π}{6}$.
(1)求ω的值并求f(x)的最小值;
(2)△ABC中,a,b,c分别为△ABC的内角A,B,C的对边,且a=1,S△ABC=$\frac{\sqrt{3}}{4}$,f(A)=2,求△ABC的周长.

分析 (1)运用二倍角余弦公式和两角和的正弦公式,化简f(x),再由正弦函数的对称轴方程和最值,求得ω的值并求f(x)的最小值;
(2)由f(A)=2,求得A;再由三角形的余弦定理和面积公式,求得b,c的关系,即可得到所求三角形的周长.

解答 解:(1)函数f(x)=2$\sqrt{3}$sin(2ωx+$\frac{π}{3}$)-4cos2ωx+3(0<ω<2)
=2$\sqrt{3}$($\frac{1}{2}$sin2ωx+$\frac{\sqrt{3}}{2}$cos2ωx)-2(1+cos2ωx)+3
=$\sqrt{3}$sin2ωx+cos2ωx+1=1+2sin(2ωx+$\frac{π}{6}$),
由y=f(x)的图象的一条对称轴为x=$\frac{π}{6}$,
可得2ω•$\frac{π}{6}$+$\frac{π}{6}$=kπ+$\frac{π}{2}$,k∈Z,
即ω=3k+1,k∈Z,
由0<ω<2,可得ω=1;
当2x+$\frac{π}{6}$=2kπ-$\frac{π}{2}$,k∈Z,即x=kπ-$\frac{π}{3}$,k∈Z,
f(x)=1+2sin(2x+$\frac{π}{6}$)取得最小值1-2=-1;
(2)由f(A)=1+2sin(2A+$\frac{π}{6}$)=2,
可得sin(2A+$\frac{π}{6}$)=$\frac{1}{2}$,
由A为三角形的内角,可得2A+$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{13π}{6}$),
即有2A+$\frac{π}{6}$=$\frac{5π}{6}$,解得A=$\frac{π}{3}$,
由a=1,S△ABC=$\frac{\sqrt{3}}{4}$,
可得$\frac{1}{2}$bcsinA=$\frac{\sqrt{3}}{4}$,即为bc=1,①
由a2=b2+c2-2bccosA,
即为b2+c2=2②
可得b+c=$\sqrt{{b}^{2}+{c}^{2}+2bc}$=$\sqrt{2+2}$=2,
则△ABC的周长为a+b+c=3.

点评 本题考查三角函数的恒等变换,正弦函数的图形和性质,考查解三角形的余弦定理和面积公式,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知数列{an}满足a1=$\frac{2}{5}$,an+1=$\frac{2{a}_{n}}{3-{a}_{n}}$,n∈N*
(1)求a2
(2)求{$\frac{1}{{a}_{n}}$}的通项公式;
(3)设{an}的前n项和为Sn,求证:$\frac{6}{5}$(1-($\frac{2}{3}$)n)≤Sn<$\frac{21}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知$a=\int_0^π{sinxdx}$,则二项式${({1-\frac{a}{x}})^6}$的展开式中x-3的系数为-160.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若不等式$\frac{{a}^{2}+{b}^{2}}{2}$+1>m(a+b)对任意正数a,b恒成立,则实数m的取值范围是(  )
A.(-∞,$\frac{1}{2}$)B.(-∞,1)C.(-∞,2)D.(-∞,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知a∈R,命题“?x∈(0,+∞),等式lnx=a成立”的否定形式是(  )
A.?x∈(0,+∞),等式lnx=a不成立B.?x∈(-∞,0),等式lnx=a不成立
C.?x0∈(0,+∞),等式lnx0=a不成立D.?x0∈(-∞,0),等式lnx0=a不成立

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若x,y满足约束条件$\left\{\begin{array}{l}{x+y≥1}\\{x-y≤2}\\{y≤2}\end{array}\right.$,则z=$\frac{1}{2}$x+y的最小值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设x∈R,向量$\overrightarrow{a}$=(1,x),$\overrightarrow{b}$=(2,-4),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$•$\overrightarrow{b}$=(  )
A.-6B.$\sqrt{10}$C.$\sqrt{5}$D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=$\left\{\begin{array}{l}{{3}^{x-2}(x<2)}\\{lo{g}_{3}({x}^{2}-1)(x≥2)}\end{array}\right.$,若f(a)=1,则a的值是(  )
A.2B.1C.1或2D.1或-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.过点C(2,-1)且与直线x+y-3=0垂直的直线是(  )
A.x+y-1=0B.x+y+1=0C.x-y-3=0D.x-y-1=0

查看答案和解析>>

同步练习册答案