精英家教网 > 高中数学 > 题目详情
6.如图,正△ABC的中线AF与中位线DE相交于G,已知△A′ED是△AED绕DE旋转过程中的一个图形,下列命题中,错误的是(  )
A.动点A′在平面ABC上的射影在线段AF上
B.恒有DE⊥平面A′GF
C.三棱锥A′-FED的体积有最大值
D.异面直线A′E与BD不可能垂直

分析 由△ABC为正三角形可探讨过A'作面ABC的垂线的垂足的位置在AF上,从而可以得到A,B,C正确,通过举反例否定D,即可得答案.

解答 解:过A′作A'H⊥面ABC,垂足为H,
∵△ABC为正三角形且中线AF与中位线DE相交
∴AG⊥DE,A′G⊥DE,
又∵AG∩A′G=G
∴DE⊥面A′GA,
∴H在AF上,故恒有平面A′GF⊥平面BCED,故A,B对.
S三棱锥A′-FED=$\frac{1}{3}$S△EFD•A′H,
∵底面面积是个定值,
∴当A′H为A′G时,三棱锥的面积最大,故C对;
在△A′ED是△AED绕DE旋转的过程中异面直线A′E与BD可能互相垂直,故D不对
故选:D.

点评 本题主要考查了命题的真假判断与应用,考查空间中点,线,面的位置关系,以及线面,面面垂直的判断和性质,同时也考查了异面直线所成角,是个基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.设函数f(x)为奇函数,且在(-∞,0)上是减函数,若f(-3)=0,则xf(x)<0的解集为(  )
A.(-3,0)∪(3,+∞)B.(-∞,-3)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-3,0)∪(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=sin(2x-$\frac{π}{3}$)(x∈R)的图象为C,以下结论正确的是①②.(写出所有正确结论的编号)
①图象C关于直线x=$\frac{11π}{12}$对称;
②图象C关于点($\frac{2π}{3}$,0)对称;
③函数f(x)在区间(-$\frac{π}{12}$,$\frac{5π}{2}$)内是增函数;
④由y=sin2x的图象向右平移$\frac{π}{3}$个单位长度可以得到图象C.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知复数z=$\frac{2}{1+i}$,则|z|等于(  )
A.2B.$\sqrt{2}$C.2 $\sqrt{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.奇函数f(x)的定义域为R.若f(x+2)为偶函数,且f(1)=1,则f(5)+f(8)=(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知AB是圆O的一条弦,过点A、B分别作AE⊥AB,BF⊥AB,交弧AB上任意一点T的切线于点E、F,OT交AB于点C,求证:
(Ⅰ)∠CBT=∠CFT;
(Ⅱ)CT2=AE•BF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知平行六面体ABCD-A1B1C1D1,M为A1C1与B1D1的交点,化简下列向量表达式:
(1)$\overrightarrow{A{A}_{1}}$+$\overrightarrow{{A}_{1}{B}_{1}}$;
(2)$\frac{1}{2}$$\overrightarrow{{A}_{1}{B}_{1}}$+$\frac{1}{2}$$\overrightarrow{A{{\;}_{1}D}_{1}}$;
(3)$\overrightarrow{A{A}_{1}}$+$\frac{1}{2}$$\overrightarrow{{A}_{1}{B}_{1}}$+$\frac{1}{2}$$\overrightarrow{{A}_{1}{D}_{1}}$;
(4)$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{C{C}_{1}}$+$\overrightarrow{{C}_{1}{A}_{1}}$+$\overrightarrow{{A}_{1}A}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=2sin(x-$\frac{π}{3}$),x∈[-π,0]的单调增区间为[-$\frac{π}{6}$,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=$\frac{{x}^{2}+x-5}{x-2}$,x∈(2,+∞)的最小值为(  )
A.4B.5C.6D.7

查看答案和解析>>

同步练习册答案