【题目】已知中心在原点的双曲线C的渐近线方程为y=±2x,且该双曲线过点(2,2).
(1)求双曲线C的标准方程;
(2)点A为双曲线C上任一点,F1F2分别为双曲线的左右焦点,过其中的一个焦点作∠F1AF2的角平分线的垂线,垂足为点P,求点P的轨迹方程.
【答案】(1).(2)
【解析】
(1)根据渐近线方程,设出双曲线方程,根据点在双曲线上,求出参数值,即可得到结果;
(2)根据题意,由三角形全等,结合双曲线的定义,推出点满足的条件,根据圆的定义,即可写出其轨迹方程.
(1)根据题意,双曲线的渐近线方程是y=±2x,
则设双曲线方程为:4x2﹣y2=λ,(λ≠0),
点(2,2)代入得:λ=12,
则双曲线方程为:4x2﹣y2=12,
即1.
(2)∵F1,F2是双曲线1的左右焦点,
过F2作角的平分线AB的垂线,垂足为P,
并且交AF1于Q,连接OP,
如下图所示:
则//,
显然
故|AQ|=|AF2|,
∴|F1Q|=|AF1|﹣|AQ|=|AF1|﹣|AF2|=2a,
∴|OP|=a,
由圆的定义可知,点P的轨迹是以点O为圆心,为半径的圆,
所以P的轨迹方程为:x2+y2=3.
科目:高中数学 来源: 题型:
【题目】已知椭圆的上顶点为,以为圆心椭圆的长半轴为半径的圆与轴的交点分别为,.
(1)求椭圆的标准方程;
(2)设不经过点的直线与椭圆交于,两点,且,试探究直线是否过定点?若过定点,求出该定点的坐标,若不过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年7月1日,《上海市生活垃圾管理条例》正式实施,生活垃圾要按照“可回收物”、“有害垃圾”、“湿垃圾”、“干垃圾”的分类标准进行分类,没有垃圾分类和未投放到指定垃圾桶内等会被罚款和行政处罚.若某上海居民提着厨房里产生的“湿垃圾”随意地投放到楼下的垃圾桶,若楼下分别放有“可回收物”、“有害垃圾”、“湿垃圾”、“干垃圾”四个垃圾桶,则该居民会被罚款和行政处罚的概率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,四棱锥中,菱形所在的平面,是中点,是上的点.
(1)求证:平面平面;
(2)若是的中点,当时,是否存在点,使直线与平面的所成角的正弦值为?若存在,请求出的值,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com