精英家教网 > 高中数学 > 题目详情

【题目】在极坐标系下,已知直线 ( )和圆 .圆 与直线 的交点为 .
(1)求圆 的直角坐标方程,并写出圆 的圆心与半径.
(2)求 的面积.

【答案】
(1)解:∵ ,故

∴圆 的直角坐标方程为: .

∴圆 的标准方程为:

∴圆 的圆心为 ,半径为1.


(2)解:将 ,代入 ,得: ,解得: .

,即 .

由于 的半径为1,所以 的面积为 .


【解析】对于 (1)要用到极坐标与直角坐标的互化公式,从而得到圆的直角坐标方程,化为标准方程,得到圆心坐标和半径.
对于(2)直线 l 1 : θ =, ( ρ ∈ R ),表示的不是射线而是倾斜角为的直线,直接将直线的极坐标方程代入圆的极坐标方程中,可求出两交点A,B的极径,其差即为弦AB的长,在圆中由半径和弦长,可求出三角形的面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了丰富改善居民生活,市招商局引进外商到开发区一次性投资72万元建起了一座蔬菜加工厂.以后每年还需要继续投资:第一年需要要各种经费为12万元,从第二年开始每年所需经费均比上一年增加4万元,该加工厂每年销售总收入为50万元.

(1)若扣除投资及各种经费,该加工厂从第几年开始纯利润为正?

(2)若干年后,外商为开发新项目,对加工厂有两种处理方案:

若年平均纯利润达到最大值时,便以48万元价格出售该厂;

若纯利润总和达到最大值时,便以16万元的价格出售该厂.

问:哪一种方案比较合算?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·江苏)已知集合X={1,2,3},Yn={1,2,3...,n}(nN*),Sn={(a,b)|a整除b或b整除a, aX, bYn}, 令f(n)表示集合Sn所包含元素的个数。
(1)写出f(6)的值;
(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求的最小正周期和递减区间;

(2)当时,求的最大值和最小值,以及取得最值时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,游客从某旅游景区的景点处下上至处有两种路径.一种是从沿直线步行到,另一种是先从沿索道乘缆车到,然后从沿直线步行到.现有甲、乙两位游客从处下山,甲沿匀速步行,速度为.在甲出发后,乙从乘缆车到,在处停留后,再从匀速步行到,假设缆车匀速直线运动的速度为,山路长为1260,经测量

1)求索道的长;

2)问:乙出发多少后,乙在缆车上与甲的距离最短?

3)为使两位游客在处互相等待的时间不超过,乙步行的速度应控制在什么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据要求求值:
(1)用辗转相除法求123和48的最大公约数.
(2)用更相减损术求80和36的最大公约数.
(3)把89化为二进制数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】F1、F2为椭圆的两个焦点,以F2为圆心作圆F2 , 已知圆F2经过椭圆的中心,且与椭圆相交于M点,若直线MF1恰与圆F2相切,则该椭圆的离心率e为(  )
A. ﹣1
B.2﹣
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设关于某设备的使用年限x和支出的维修费用y(万元),有如下表的统计资料:

使用年限x

2

3

4

5

6

维修费用y

2.2

3.8

5.5

6.5

7.0

若由资料知yx呈线性相关关系,试求:
(1)线性回归方程 .
(2)估计使用年限为10年时,维修费用是多少.
(3)计算总偏差平方和、残差平方和及回归平方和.
(4)求 并说明模型的拟合效果.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:,,,,.

(1).求图中的值; 并根据频率分布直方图,估计这100名学生语文成绩的平均分;

(2).若这100名学生语文成绩某些分数段的人数()与数学成绩相应分数段的人数()之比如上右表所示,求数学成绩在之外的人数.

查看答案和解析>>

同步练习册答案