精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点,AB=2,AD=2
2
,PA=2,则异面直线BC与AE所成的角的大小为(  )
A、
π
6
B、
π
4
C、
π
3
D、
π
2
考点:异面直线及其所成的角
专题:空间角
分析:以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,由此能求出异面直线BC与AE所成的角.
解答: 解:以A为原点,AB为x轴,AD为y轴,AP为z轴,
建立空间直角坐标系,
B(2,0,0),C(2,2
2
,0),P(0,0,2),
A(0,0,0),E(1,
2
,1),
BC
=(0,2
2
,0),
AE
=(1,
2
,1),
设异面直线BC与AE所成的角为θ,
cos<
BC
AE
>=
|
BC
AE
|
|
BC
|•|
AE
|
=
4
2
2
4
=
2
2

∴异面直线BC与AE所成的角的大小为
π
4

故选:B.
点评:本题考查空间点、线、面的位置关系及学生的空间想象能力、求异面直线角的能力,解题时要注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若A、B两点的坐标分别是A(3cosa,3sina,1),B(2cosb,2sinb,1),则|
AB
|的取值范围是(  )
A、[0,5]
B、[1,5]
C、(1,5)
D、[1,25]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,an+1=an+n+2n(n∈N*),则an等于(  )
A、
n(n-1)
2
+2n-1-1
B、
n(n-1)
2
+2n-1
C、
n(n+1)
2
+2n+1-1
D、
n(n-1)
2
+2n+1-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P是圆F1:(x+1)2+y2=8上任意一点,又F2(1,0),直线m分别与线段F1P,F2P交于M,N两点,且
MN
=
1
2
MF2
+
MP
),|
NM
+
F2P
|=|
NM
-
F2P
|.
(1)求点M的轨迹C的方程;
(2)直线x=my+2与椭圆交于A、B两点,点D在椭圆上,且
OA
+
OB
OD
,E(-
2
m
m-2
m
),设△EAB的面积为S,若0<S≤1,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直三棱柱ABC-A1B1C中,AB⊥BC,AB=4,BC=6,AA1=8,有一只蚂蚁沿着三棱柱的表面从点A爬行到点C1,并且在棱BB1上的一点M稍作停顿,当蚂蚁爬行距离最短时,BM的长度为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

正四棱锥的侧棱长为2
3
,侧棱与底面所成角为60°,则该四棱锥的高为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C与直线l:x+y-2=0和圆P:(x-6)2+(y-6)2=18均相切,求圆C的面积的最小值及此时圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,已知a:b:c=2:4:5,求
2sinB
3sinC-5sinA
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin
5
6
π,4a,cos
11
3
π三个数成等比数列,则a=(  )
A、-
1
2
B、
1
2
C、-
2
3
D、0

查看答案和解析>>

同步练习册答案