精英家教网 > 高中数学 > 题目详情

已知椭圆的中心在原点,一个顶点坐标为A(0,-1),焦点在x轴上.若右焦点到直线x-y+2=0的距离为3.

(1)求椭圆的方程

(2)设直线y=kx+m(k≠0)与椭圆相交于两个不同的点M、N,当|AM|=|AN|时,求m的取值范围.

答案:
解析:

  解:(1)依题意可设椭圆方程为,则右焦点F()由题设

  ,解得

  故所求椭圆的方程为  4分

  (2)设P为弦MN的中点,由

  得

  由于直线与椭圆有两个交点, ①  6分

  ,从而

  ,又

  则,即 ②  9分

  把②代入①得解得,由②得

  解得.故所求m的取范围是()  12分


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,焦点在x轴上,离心率为
2
2
,且椭圆经过圆C:x2+y2-4x+2
2
y=0的圆心C.
(1)求椭圆的方程;
(2)设直线l过椭圆的焦点且与圆C相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点O,焦点在坐标轴上,直线y=2x+1与该椭圆相交于P和Q,且OP⊥OQ,|PQ|=
1011
,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,对称轴为坐标轴,左焦点为F1(-3,0),右准线方程为x=
253

(1)求椭圆的标准方程和离心率e;
(2)设P为椭圆上第一象限的点,F2为右焦点,若△PF1F2为直角三角形,求△PF1F2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,且椭圆过点P(3,2),焦点在坐标轴上,长轴长是短轴长的3倍,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,一个焦点F1(0,-2
2
),且离心率e满足:
2
3
,e,
4
3
成等比数列.
(1)求椭圆方程;
(2)直线y=x+1与椭圆交于点A,B.求△AOB的面积.

查看答案和解析>>

同步练习册答案