精英家教网 > 高中数学 > 题目详情
6.等边△ABC中,D,E分别是AC,AB的中点,沿DE将△ADE折起,使平面ADE⊥平面BCDE(如图所示).
 (1)求证:平面ABC⊥平面ABE;
(2)求直线AC与平面ABE所成角的正弦值.

分析 (1)取DE的中点O,取BC的中点G,连结AO,OG,以O为原点,OD为x轴,OG为y轴,OA为z轴,建立空间直角坐标系,利用向量法能证明平面ABC⊥平面ABE.
(2)求出$\overrightarrow{AC}$=(2,$\sqrt{3}$,-$\sqrt{3}$),平面ABE的法向量,利用向量法能求出直线AC与平面ABE所成角的正弦值.

解答 (1)证明:取DE的中点O,取BC的中点G,连结AO,OG,
则AO⊥DE,OG⊥DE,
∵平面ADE⊥平面BCDE,平面ADE∩平面BCDE=DE,
∴AO⊥平面BCDE,∴AO⊥OG,
以O为原点,OD为x轴,OG为y轴,OA为z轴,建立空间直角坐标系,
设BC=4,则DE=2,AO=OG=3,
∴A(0,0,$\sqrt{3}$),D(1,0,0),E(-1,0,0),B(-2,3,0),C(2,$\sqrt{3}$,0),
设平面ABE的法向量为$\overrightarrow{m}$=(x1,y1,z1),
∵$\overrightarrow{EA}=(1,0,\sqrt{3})$,$\overrightarrow{EB}=(-1,3,0)$,
∴$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{EA}={x}_{1}+\sqrt{3}{z}_{1}=0}\\{\overrightarrow{m}•\overrightarrow{EB}=-{x}_{1}+\sqrt{3}{y}_{1}=0}\end{array}\right.$,取y1=1,得$\overrightarrow{m}$=($\sqrt{3},1,-1$),
设平面ABC的法向量$\overrightarrow{n}$=(x2,y2,z2),
∵$\overrightarrow{BC}$=(4,0,0)<$\overrightarrow{AC}$=(2,$\sqrt{3},-\sqrt{3}$),
∴$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BC}={x}_{2}=0}\\{\overrightarrow{n}•\overrightarrow{AC}=2{x}_{2}+3{y}_{2}-\sqrt{3}{z}_{2}=0}\end{array}\right.$,取y2=1,得$\overrightarrow{n}$=(0,1,1),
∵$\overrightarrow{m}•\overrightarrow{n}$=0+1-1=0,
∴平面ABC⊥平面ABE.
(2)$\overrightarrow{AC}$=(2,$\sqrt{3}$,-$\sqrt{3}$),平面ABE的法向量为$\overrightarrow{m}$=($\sqrt{3},1,-1$),
设直线AC与平面ABE所成角为θ,
则sinθ=|cos<$\overrightarrow{AC},\overrightarrow{m}$>|=|$\frac{\overrightarrow{AC}•\overrightarrow{m}}{|\overrightarrow{AC}|•|\overrightarrow{m}|}$|=|$\frac{2\sqrt{3}+\sqrt{3}+\sqrt{3}}{\sqrt{4+3+3}•\sqrt{3+1+1}}$|=$\frac{2\sqrt{6}}{5}$.
∴直线AC与平面ABE所成角的正弦值为$\frac{2\sqrt{6}}{5}$.

点评 本题考查面面垂直的证明,考查线面角的正弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知四棱锥ABCD-A1B1C1D1的底面是边长为2的正方形,侧棱AA1⊥底面ABCD,若得二面角A1-BD-C1的大小为60°,求四棱柱ABCD-A1B1C1D1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若x,y满足约束条件$\left\{\begin{array}{l}{x+2y-2≥0}\\{x-y+3≥0}\\{x≤3}\end{array}\right.$,则z=2x+y的最大值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知集合A={x|log2(4x)•log2x≤0}
(1)求集合A;
(2)求函数y=42x+1+4x(x∈A)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若实数x,y满足:$\left\{{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{x≤4}\end{array}}\right.$,则$\frac{x}{y}$的取值范围是[$\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知二次函数f(x)满足f(x+1)-f(x)=4x,且f(0)=1.
(1)求二次函数f(x)的解析式.
(2)求函数g(x)=($\frac{1}{2}$)f(x)的单调增区间和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.函数f(x)=$\frac{ax+2015b}{{x}^{2}+1}$是定义在(-∞,+∞)上的奇函数,且f($\frac{1}{3}$)=$\frac{3}{10}$.
(1)求实数a,b,并确定函数f(x)的解析式;
(2)用定义证明f(x)在(-1,1)上是增函数;
(3)写出f(x)的单调减区间,并判断f(x)有无最大值或最小值?如有,写出最大值或最小值.(本小问不需说明理由)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设f:A→B是从集合A到集合B的映射,则下列说法正确的是(  )
A.A中不同元素的像必不同
B.A中每一个元素在B中必有像
C.B中每一个元素在A中必有原像
D.B中每一个元素在A中必有唯一的原像

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,三棱锥P-ABC中,PA=PB=PC=AC=4,AB=BC=2$\sqrt{2}$.
(1)求证:平面ABC⊥平面APC;
(2)求直线PA与平面PBC所成角的正弦值;
(3)若M为棱BC上一点,且二面角M-PA-C的大小为$\frac{π}{6}$,求$\frac{BM}{BC}$的值.

查看答案和解析>>

同步练习册答案