精英家教网 > 高中数学 > 题目详情

【题目】阅读如图所示的程序框图,则输出的S=(
A.14
B.30
C.20
D.55

【答案】B
【解析】解:由程序框图知:第一次运行S=1,i=1+1=2,不满足条件i>4,循环, 第二次运行S=1+4=5,i=2+1=3,不满足条件i>4,循环,
第三次运行S=5+9=14,i=3+1=4,不满足条件i>4,循环,
第四次运行S=14+16=30,i=4+1=5,满足条件i>4,终止程序,
输出S=30,
故选:B.
【考点精析】根据题目的已知条件,利用算法的循环结构的相关知识可以得到问题的答案,需要掌握在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,循环结构可细分为两类:当型循环结构和直到型循环结构.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和Sn=2an﹣a1 , 且a1 , a2+1,a3成等差数列.
(1)求数列{an}的通项公式;
(2)记数列 的前n项和Tn , 求使得 成立的n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为1的正方体中,P是侧棱CC1上的一点,CP=m
(1)试确定m,使直线AP与平面BDD1B1所成角的正切值为
(2)在线段A1C1上是否存在一个定点Q,使得对任意的m,D1Q在平面APD1上的射影垂直于AP,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (其中a为非零实数),且方程 有且仅有一个实数根. (Ⅰ)求实数a的值;
(Ⅱ)证明:函数f(x)在区间(0,+∞)上单调递减.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+ .且f(1)=5.
(1)求a的值;
(2)判断函数f(x)的奇偶性;
(3)判断函数f(x)在(2,+∞)上的单调性并用定义证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=﹣ x2+bln(x+2)在区间[﹣1,2]不单调,则b的取值范围是(
A.(﹣∞,﹣1]
B.[8,+∞)
C.(﹣∞,﹣1]∪[8,+∞)
D.(﹣1,8)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知半径为 的圆C,其圆心在射线y=﹣2x(x<0)上,且与直线x+y+1=0相切.
(1)求圆C的方程;
(2)从圆C外一点P(x0 , y0))向圆引切线PM,M为切点,O为坐标原点,且有|PM|=|PO|,求△PMC面积的最小值,并求此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别是a,b,c,若(2a﹣c)cosB=bcosC.
(1)求角B的大小,
(2)若a=3,△ABC的面积为 ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设l,m是两条不同的直线,α是一个平面,则下列命题正确的是(
A.若l⊥m,mα,则l⊥α
B.若l⊥α,l∥m,则m⊥α
C.若l∥α,mα,则l∥m
D.若l∥α,m∥α,则l∥m

查看答案和解析>>

同步练习册答案