精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)求函数的单调区间;

2)若对任意,都有成立,求实数的最小值.

【答案】1)函数的单增区间为,单减区间为2的最小值为1

【解析】

(1)求导后列表分析函数单调性即可.

(2)(1)可知的最小值为,再根据恒成立问题的方法分情况分析的最小值即可.

解:(1)由解得,

的情况如下:

2

-

0

+

极小值

所以函数的单增区间为,单减区间为

2)法一:

时,.

时,.

,由(1)可知的最小值为,的最大值为,

所以“对任意,有恒成立”

等价于“”,

,

解得.

所以的最小值为1.

法二:

时,.

时,.

且由(1)可知,的最小值为,

,即时,

,则任取,

,

所以成立,

所以必有成立,所以,即.

而当时,,,,

所以,即满足要求,

而当时,求出的的值,显然大于1,

综上,的最小值为1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】王先生购买了一部手机,欲使用中国移动“神州行”卡或加入联通的网,经调查其收费标准见下表:(注:本地电话费以分为计费单位,长途话费以秒为计费单位.

网络

月租费

本地话费

长途话费

甲:联通

/

/

乙:移动“神州行”

/

/

若王先生每月拨打本地电话的时间是拨打长途电话时间的倍,若要用联通应最少打多长时间的长途电话才合算.

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数(a,);

(1)若,求证:函数的图像必过定点;

(2)若,证明:在区间上的最大值;

(3)存在实数a,使得当时,恒成立,求实数b的最大值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆上的点到右焦点的距离的最大值为3

(1)求椭圆的方程;

(2)若过椭圆的右焦点作倾斜角不为零的直线与椭圆交于两点,设线段的垂直平分线在轴上的截距为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且点在函数的图像上;

1)求数列的通项公式;

2)设数列满足:,求的通项公式;

3)在第(2)问的条件下,若对于任意的,不等式恒成立,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了解社区群众体育活动的开展情况,拟采用分层抽样的方法从A,B,C三个行政区抽出6个社区进行调查.已知A,B,C行政区中分别有12,18,6个社区.

1)求从A,B,C三个行政区中分别抽取的社区个数;

2)若从抽得的6个社区中随机的抽取2个进行调查结果的对比,求抽取的2个社区中至少有一个来自A行政区的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了人,他们年龄的频数分布及支持生育二胎人数如下表:

年龄

频数

支持“生二胎”

1)由以上统计数据填下面列联表,并问是否有的把握认为以岁为分界点对“生育二胎放开”政策的支持度有差异;

年龄不低于岁的人数

年龄低于岁的人数

合计

支持

不支持

合计

2)若对年龄在的被调查人中随机选取两人进行调查,恰好这两人都支持“生育二胎放开”的概率是多少?

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的坐标方程为,若直线与曲线相切.

(1)求曲线的极坐标方程;

(2)在曲线上取两点于原点构成,且满足,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】李克强总理在2018年政府工作报告指出,要加快建设创新型国家,把握世界新一轮科技革命和产业变革大势,深入实施创新驱动发展战略,不断增强经济创新力和竞争力.某手机生产企业积极响应政府号召,大力研发新产品,争创世界名牌.为了对研发的一批最新款手机进行合理定价,将该款手机按事先拟定的价格进行试销,得到一组销售数据,如表所示:

单价(千元)

销量(百件)

已知.

(1)若变量具有线性相关关系,求产品销量(百件)关于试销单价(千元)的线性回归方程

(2)用(1)中所求的线性回归方程得到与对应的产品销量的估计值.当销售数据对应的残差的绝对值时,则将销售数据称为一个“好数据”.现从个销售数据中任取个子,求“好数据”个数的分布列和数学期望.

(参考公式:线性回归方程中的估计值分别为.

查看答案和解析>>

同步练习册答案