精英家教网 > 高中数学 > 题目详情

【题目】某水产养殖户在鱼成熟时,随机从网箱中捕捞100尾鱼,其质量分别在[44.5),[4.5.5),[5.5.5),[5.56),[66.5),[6.57](单位:斤)中,经统计得频率分布直方图如图所示

1)现按分层抽样的方法,从质量为[4.55),[55.5)的鱼中随机抽取5尾,再从这5尾中随机抽取2尾,记随机变量X表示质量在[4.55)内的鱼的尾数,求X的分布列及数学期望.

2)以各组数据的中间数代表这组数据的平均值,将频率视为概率,该养殖户还未捕捞的鱼大约还有1000尾,现有两个方案:

方案一:所有剩余的鱼现在卖出,质量低于5.5斤的鱼售价为每斤10元,质量高于5.5斤的鱼售价为每斤12

方案二:一周后所有剩余的鱼逢节日卖出,假设每尾鱼的质量不变,鱼的数目不变,质量低于5.5斤的鱼售价为每斤15元,这类鱼养殖一周的费用是平均每尾22元;质量高于5.5斤的鱼售价为每斤16元,这类鱼养殖一周的费用是平均每尾24元通过计算确定水产养殖户选择哪种方案获利更多?

【答案】1)见解析,.(2)水产养殖户选择方案一获利更多.

【解析】

1)计算两种鱼的尾数,根据超级和分布计算概率,得出X的分布列和数学期望;

2)分别计算各种重量的鱼的尾数,计算两种方案对应的售价得出结论.

1)质量在[4.55)和[55.5)的鱼尾数比为0.20.3,即23

故按分层抽样的方法,从质量为[4.55),[55.5)的鱼中随机抽取5尾,

质量在[4.55)的鱼有2尾,质量在[55.5)的鱼有3尾,

X的可能取值为012

PX0PX1PX2

X的分布列为:

X

0

1

2

P

EX012

2)故按若按方案一,

卖鱼所得收入为:

4.25×10×1000×0.2×0.5+4.75×10×1000×0.2×0.5+5.25×10×1000×0.3×0.5+5.75×12×1000×0.8×0.5+6.25×12×1000×0.4×0.5+6.75×12×1000×0.1×0.5

4250+4750+7875+27600+15000+4050

63525(元),

若按方案二,卖鱼所得收入为:

4.25×15×1000×0.2×0.5+4.75×15×1000×0.2×0.5+5.25×15×1000×0.3×0.5+5.75×16×1000×0.8×0.5+6.25×16×1000×0.4×0.5+6.75×16×1000×0.1×0.524×1000

6370+7125+11812.5+36800+20000+540024000

63507(元).

6352563507

∴水产养殖户选择方案一获利更多.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图(1)为某省2016年快递业务量统计表,图(2)某省2016年快递业务收入统计表,对统计图下列理解错误的是()

A.201614月业务量最高3月最低2月,差值接近2000万件

B.201614月业务量同比增长率均超过50%,在3月最高,和春节蛰伏后网购迎来喷涨有关

C.从两图中看,增量与增长速度并不完全一致,但业务量与业务的收入变化高度一致

D.14月来看,业务量与业务收入量有波动,但整体保持高速增长

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)当a时,求证:

2)当时,求函数上的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方形ABCDEF分别为ABCD的中点,将△ADE沿DE折起,使△ACD为等边三角形,如图所示,记二面角A-DE-C的大小为.

1)证明:点A在平面BCDE内的射影G在直线EF上;

2)求角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fxgx)=3elnx+mx的图象有4个不同的交点,则实数m的取值范围是(

A.(﹣3B.(﹣1C.(﹣13D.03

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某美术学院2018年在山西招生,报名人数很多.工作人员在某个市区抽取了该区2018年美术招生考试成绩中200名学生的色彩和素描的初试成绩,按成绩分组,得到的频率分布表如下图所示.

组号

分组

频数

频率

1

24

0.12

2

0.18

3

64

0.32

4

60

5

16

0.08

合计

200

1.00

1)请先求出频率分布表中①、②位置相应数据,再在答题纸上完成下列频率分布直方图,并由频率分布直方图估算中位数;

2)为了能更清楚地了解该市学生的情况,该美院决定在复试以前先进行抽样调研.但受场地和教授人数的客观限制,决定从第3组选出3人,第4组选出2人,第5组选出1人,然后从这6人中再选出2人进行调研,求这2人均来自第三组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=xlnx+2x1

1)求fx)的极值;

2)若对任意的x1,都有fx)﹣kx1)>0kZ)恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,当且仅当时取到极值,且极大值比极小值大

(1)值;

(2)求出的极大值和极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)若存在正数a,使得时,,求实数k的取值范围.

查看答案和解析>>

同步练习册答案