精英家教网 > 高中数学 > 题目详情
4.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a2=b2+c2-$\frac{1}{2}$bc,sinA=2sinB.
(1)求cosA;
(2)求cos(2A-B)

分析 (1)由已知条件和余弦定理可得可得cosA的值;
(2)由同角三角函数基本关系可得sin2A和cos2A的值,进而可得sinB和cosB的值,再由两角和与差的三角函数公式可得.

解答 解:(1)∵a2=b2+c2-$\frac{1}{2}$bc,
∴b2+c2-a2=$\frac{1}{2}$bc,
两边同除以2bc可得cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{1}{4}$;
(2)∵cosA=$\frac{1}{4}$,∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{\sqrt{15}}{4}$,
∴sin2A=2sinAcosA=$\frac{\sqrt{15}}{8}$,
cos2A=2cos2A-1=-$\frac{7}{8}$,
又∵sinA=2sinB,∴sinB=$\frac{\sqrt{15}}{16}$,
∴a=2b,即A>B,故B为锐角,
∴cosB=$\sqrt{1-si{n}^{2}B}$=$\frac{1}{4}$,
∴cos(2A-B)=cos2AcosB+sin2AsinB
=$-\frac{7}{8}×\frac{1}{4}+\frac{\sqrt{15}}{8}×\frac{\sqrt{15}}{16}$=-$\frac{13}{128}$

点评 本题考查解三角形,涉及余弦定理和同角三角函数的基本关系,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知集合M={x|x2-2x-3≤0},N={x|-2<x<2},则M∩N=(  )
A.B.{x|-1≤x<2}C.{x|-2≤x<-1}D.{x|2≤x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知命题p:“?x∈R,ex>0”,命题q:“?x0∈R,x0-2>x02”,则(  )
A.命题p∨q是假命题B.命题p∧q是真命题
C.命题p∧(¬q)是真命题D.命题p∨(¬q)是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知平面α,β的法向量分别是(-2,3,m),(4,λ,0),若α∥β,则λ+m的值(  )
A.8B.6C.-10D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.旋转曲面$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}+\frac{{z}^{2}}{9}$=1的旋转轴为(  )
A.x轴B.y轴C.z轴D.直线$\frac{x}{3}=\frac{y}{2}=\frac{z}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2sinxcosx+1.
(1)求f($\frac{π}{4}$)的值及f(x)的最小正周期;
(2)求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)={x}^{2}+2xsinθ-1,x∈[-\frac{\sqrt{3}}{2},\frac{1}{2}]$.
(1)若$θ=\frac{π}{6}$,若f(x)<m恒成立,求实数m的范围;
(2)若f(x)在x∈[-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$]上是单调函数,且θ∈[0,2π),求θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.证明和差化积公式:sinx+siny=2sin$\frac{x+y}{2}$cos$\frac{x-y}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.圆O1:x2+y2+6x-4y+10=0与圆O2:x2+y2=4的位置关系是(  )
A.相离B.相交C.外切D.内切

查看答案和解析>>

同步练习册答案