精英家教网 > 高中数学 > 题目详情
18.函数f(x)=3sin(ωx+φ)(ω≠0)对于任意的实数x,都有f(1+x)=f(1-x),则f(1)=±3.

分析 根据条件判断函数的对称性,结合三角函数的对称性进行求解即可.

解答 解:∵f(1+x)=f(1-x),
∴x=1是函数f(x)的对称轴,
即当x=1时,f(1)=±3,
故答案为:±3

点评 本题主要考查抽象函数的应用,利用函数 对称性以及三角函数的对称性的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知y=f(x)是二次函数,且f(-$\frac{3}{2}$+x)=f(-$\frac{3}{2}$-x)对x∈R恒成立,f(-$\frac{3}{2}$)=49,方程f(x)=0的两实根之差的绝对值等于7.求此二次函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示,一条边利用足够长的墙,用12m长的篱笆围出一块五边形的苗圃.已知EA⊥AB,CB⊥AB,∠C=∠D=∠E,设CD=DE=x(m),五边形的面积为S.
(1)写出苗圃面积S与x的函数关系式;
(2)当x为何值时,苗圃的面积最大?并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数$f(x)=sin2x+\sqrt{3}cos2x$在区间[0,π]上的零点之和是(  )
A.$\frac{2π}{3}$B.$\frac{7π}{12}$C.$\frac{7π}{6}$D.$\frac{4π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数$f(x)=\left\{\begin{array}{l}{2^x}+a,\;\;x≥0\\{x^2}-ax,x<0.\end{array}\right.$,若f(x)的最小值是a,则a=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设$\overrightarrow{a}$、$\overrightarrow{b}$是已知向量,若2($\overrightarrow{x}$+$\overrightarrow{a}$)-3($\overrightarrow{x}$-$\overrightarrow{b}$)=0,则$\overrightarrow{x}$=$2\overrightarrow{a}+3\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设f(x)=x2+2xsinθ+1.
(1)当θ为何值时方程f(x)=0有解?求出该方程的解;
(2)若f(x)在[-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$]上是单调减函数,求θ的取值范围;
(3)若f(x)≥x2对一切实数θ成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知定义在R上的函数y=f(x)满足:函数y=f(x-1)的图象关于直线x=1对称,且当x∈(-∞,0),f(x)+xf′(x)<0(f′(x)是函数f(x)的导函数)成立.若$a=(sin\frac{1}{2})•f(sin\frac{1}{2})$,b=(ln2)•$f(ln2),c=(lo{g_{\frac{1}{2}}}\frac{1}{4})•$$f(lo{g_{\frac{1}{2}}}\frac{1}{4})$,则a,b,c的大小关系是(  )
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知集合 A={1,3,zi}(其中i为虚数单位),B={4},A∪B=A,则复数z等于-4i.

查看答案和解析>>

同步练习册答案