精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面是菱形,侧面底面为线段的中点.

1)求证:平面

2)求平面与平面所成锐二面角的余弦值.

【答案】1)证明见解析;(2

【解析】

1)连接,交于点,连接,利用中位线的性质可得出,然后利用线面平行的判定定理可证得平面

2)取的中点,连接,证明出底面,然后以的中点为坐标原点,分别为轴、轴、轴建立空间直角坐标系,利用空间向量法可求得平面与平面所成锐二面角的余弦值.

1)连接,交于点,连接

由于底面为菱形,的中点,

中,的中点,

又因为平面平面平面

2)取的中点,连接

由题意可得,又侧面底面,即底面.

的中点为坐标原点,分别为轴、轴、轴建立如图所示

的坐标系,则有

设平面的法向量为

,得,令,则

是平面的一个法向量,

同理设平面的法向量为

,得,令,则

是平面的一个法向量,

设平面与平面所成锐二面角为,则.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】阶梯水价的原则是保基本、建机制、促节约,其中保基本是指保证至少80%的居民用户用水价格不变.为响应国家政策,制订合理的阶梯用水价格,某城市采用简单随机抽样的方法分别从郊区和城区抽取5户和20户居民的年人均用水量进行调研,得到数据如下(单位:吨).

郊区:19 25 28 32 34

城区:18 19 21 22 22 23 23 23 24 25 26 27 28 28 28 29 29 31 35 42

1)在郊区的这5户居民中随机抽取2户,求其年人均用水量都不超过30吨的概率;

2)设该城市郊区和城区的居民户数比为15,现将年人均用水量不超过30吨的用户定义为第一阶梯用户,并保证这一阶梯的居民用户用水价格保持不变,试根据样本总体的思想,分析此方案是否符合国家保基本政策.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】12个朋友每周聚餐一次,每周他们分成三组,每组4人,不同组坐不同的桌子.若要求这些朋友中任意两个人至少有一次同坐一张桌子,则至少需要周____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是自然数1,2,…,的一个排列且满足对任意均有

(1)若记为数在排列中所处位置的序号如排列).求证对每一个满足题意的排列,均有成立.

(2)试求满足题意的排列的个数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】曲线的参数方程为为参数),是曲线上的动点,且是线段的中点,点的轨迹为曲线,直线的极坐标方程为,直线与曲线交于两点.

1)求曲线的普通方程和直线的直角坐标方程;

2)写出过点的直线的参数方程,并求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,将四棱锥S-ABCD的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种色可供使用,则不同的染色方法种数为(

A.240B.360C.420D.960

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是正整数,且.(1)试求出最大的正整数,使得存在各边长都是不大于的正整数,且任意两边之差(大减小)都不小于k的三角形;(2)试求出所有的正整数,使得(1)中所述的对应于最大的正整数的三角形有且只有一个.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数定义域为,部分对应值如表,的导函数的图象如图所示. 下列关于函数的结论正确的有(

A.函数的极大值点有

B.函数在是减函数

C.时,的最大值是,则的最大值为4

D.时,函数个零点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,若椭圆经过点,且的面积为.

(1)求椭圆的标准方程;

(2)设斜率为的直线与以原点为圆心,半径为的圆交于两点,与椭圆交于两点,且,当取得最小值时,求直线的方程.

查看答案和解析>>

同步练习册答案