精英家教网 > 高中数学 > 题目详情

【题目】如图,圆与直线相切于点,与正半轴交于点,与直线在第一象限的交点为.为圆上任一点,且满足,以为坐标的动点的轨迹记为曲线

1)求圆的方程及曲线的方程;

2)若两条直线分别交曲线于点,求四边形面积的最大值,并求此时的的值.

3)根据曲线的方程,研究曲线的对称性,并证明曲线为椭圆.

【答案】1;(2时,四边形的面积最大值为;(3)见解析.

【解析】

1)由圆半径为圆心到切线距离得圆半径,从而得圆方程,由表示出点坐标代入圆方程可得曲线的方程.

2)把方程代入曲线的方程求得的坐标,得,同理可得,由,应用整体换元法结合基本不等式可求得最值(也可变形为,求最值);

(3)由曲线的方程可得对称性:关于直线对称,关于原点对称,这个方程除右边是常数1外,左边是二次式且为和的形式,与我们所学椭圆的方程类似,因此可假设其为椭圆,再根据椭圆的性质求顶点坐标和焦点坐标,根据椭圆定义证明.

解:(1)由题意圆的半径

故圆的方程为.

得,,将代入

为曲线的方程.

2)由

,

所以,同理.

由题意知 ,所以四边形的面积.

,∴ .

当且仅当时等号成立,此时.

时,四边形的面积最大值为.

3 曲线的方程为,它关于直线和原点对称,

下面证明:

设曲线上任一点的坐标为,则,点关于直线的对称点为,显然,所以点在曲线上,故曲线关于直线对称,

同理曲线关于直线和原点对称.

证明:求得和直线的交点坐标为

和直线的交点坐标为

.

上取点 .

为曲线上任一点,则

(因为

.

即曲线上任一点到两定点的距离之和为定值.

若点到两定点的距离之和为定值,可以求得点的轨迹方程为(过程略).

故曲线是椭圆

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数a0.

1)求fx)的单调增区间;

2)当x[0π]时,fx)值域为[34],求ab的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将数列中的所有项按第一行排3项,以下每一行比上一行多一项的规则排成如下数表:

……

记表中的第一列数,构成数列.

1)设,求m的值;

2)若,对于任何,都有,且.求数列的通项公式.

3)对于(2)中的数列,若上表中每一行的数按从左到右的顺序均构成公比为q)的等比数列,且,求上表中第k)行所有项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,底面为矩形,平面平面,点分别是的中点.

1)求证:平面

2)若与平面所成角的余弦值等于,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域为,若存在非零实数满足对任意,均有,且,则称上的高调函数. 如果定义域为的函数是奇函数,当时,,且上的8高调函数,那么实数的取值范围为____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年在印度尼西亚日惹举办的亚洲乒乓球锦标赛男子团体决赛中,中国队与韩国队相遇,中国队男子选手ABCDE依次出场比赛,在以往对战韩国选手的比赛中他们五人获胜的概率分别是0.80.80.80.750.7,并且比赛胜负相互独立.赛会釆用53胜制,先赢3局者获得胜利.

1)在决赛中,中国队以31获胜的概率是多少?

2)求比赛局数的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)2xx∈(01]

(1)a=-1时,求函数yf(x)的值域;

(2)若函数yf(x)x∈(01]上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】班主任为了对本班学生的考试成绩进行分析,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.

(1)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)

(2)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如下表:

学生序号

1

2

3

4

5

6

7

数学成绩

60

65

70

75

85

87

90

物理成绩

70

77

80

85

90

86

93

①若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为,求的分布列和数学期望;

②根据上表数据,求物理成绩关于数学成绩的线性回归方程(系数精确到0.01);若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?

附:线性回归方程

其中.

76

83

812

526

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)当时,求的单调区间;

2)若时,恒成立,求实数的取值范围.

附:.

查看答案和解析>>

同步练习册答案