精英家教网 > 高中数学 > 题目详情
12.求函数y=1-$\frac{1}{cosx}$的定义域.

分析 直接利用分式的分母不为0,以及余弦函数的定义域求解即可.

解答 解:要使函数有意义,可得:cosx≠0,解得x≠kπ+$\frac{π}{2}$,k∈Z.
函数y=1-$\frac{1}{cosx}$的定义域:{x|x≠kπ+$\frac{π}{2}$,k∈Z}

点评 本题考查函数的定义域的求法,余弦函数的定义域的应用,注意余弦函数的周期的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.sin47°cos13°+sin167°sin43°=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设t∈R,对任意的n∈N*,不等式ntlnn+20lnt≥ntlnt+20lnn,则t的取值范围是[4,5].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知实数x,y满足$\left\{\begin{array}{l}{2x+y-2≥0}\\{x-2y+4≥0}\\{3x-y-3≤0}\end{array}\right.$,求
(1)(x+1)2+y2的最大值和最小值;
(2)$\frac{y+1}{x+2}$的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知平行四边形ABCD的三个顶点A(0,0),B(3,1),C(4,1),则D点的坐标为(1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设f(x)是定义在R上的偶函数,且当x≥0时:f(x)=$\left\{\begin{array}{l}{{x}^{2}-1,0≤x<1}\\{lnx,x≥1}\end{array}\right.$,若对任意的x∈[a,a+1],不等式f(2x)≤(x+a)恒成立,则实数a的最大值为-$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知复数z=($\frac{\sqrt{2}i}{1+i}$)2015,i为虚数单位,则z=$\frac{\sqrt{2}-\sqrt{2}i}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=sin(2x+$\frac{π}{6}$)+cos(2x-$\frac{π}{3}$).
(1)求函数f(x)的最小正周期和最大值;
(2)在△ABC中,角A,B,C的对边分别为a,b,c,若f(C)=1,c=2$\sqrt{3}$,sinA=2sinB,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知α∈($\frac{3π}{2}$,2π),化简$\sqrt{1-sinα}$+$\sqrt{1+sinα}$.

查看答案和解析>>

同步练习册答案